ARS in Action:
An implementation in R

Malan Bosman – ICON Strategic Solutions (ISS)
malan.bosman@iconplc.com
Introduction
What if I told you…

each result
What if I told you...

for all outputs in a study
What if I told you…

each result for all outputs in a study Can be calculated…
What if I told you…

each result for all outputs in a study can be calculated…

• with one click
What if I told you…

each result for all outputs in a study Can be calculated…

• with one click
• referencing only metadata
What if I told you…

each result for all outputs in a study Can be calculated…

• with one click
• referencing only metadata
• using open-source technology
What if I told you…

each result for all outputs in a study can be calculated…

- with one click
- referencing only metadata
- using open-source technology

Now, it’s possible!
Process overview
Process overview

Study documents → ARS Model → Results → Outputs / Display
Process overview

1. Study documents
2. ARS Model
3. Results
4. Outputs / Display
Process overview

- Study documents
- SAP Shells Protocol
- ARS Model
- Results
- Outputs / Display
Process overview

1. Study documents
2. ARS Model
3. Results
4. Outputs / Display

SAP Shells Protocol
Process overview

SAP Shells Protocol

Study documents → ARS Model → Results → Outputs / Display
Process overview

SAP Shells Protocol

Study documents

ARS Model

Contains metadata to produce results - e.g. Excel workbook

Results

Outputs / Display
Process overview

SAP Shells Protocol

Contains metadata to produce results - e.g. Excel workbook

Study documents -> ARS Model -> Results -> Outputs / Display
Process overview

SAP Shells Protocol

Study documents

ARS Model

Contains metadata to produce results - e.g. Excel workbook

“Engine”

Results

Outputs / Display

Contains metadata to produce results - e.g. Excel workbook
Process overview

Study documents

ARS Model

Results

Outputs / Display

SAP Shells Protocol

Contains metadata to produce results
- e.g. Excel workbook

“Engine”
Process overview

SAP Shells Protocol

Study documents

ARS Model

Contains metadata to produce results - e.g. Excel workbook

Single dataset containing all results

Results

Outputs / Display

“Engine”
Process overview

SAP Shells Protocol

Study documents

ARS Model

Contains metadata to produce results - e.g. Excel workbook

Results

Single dataset containing all results

Outputs / Display

“Engine”
Process overview

SAP Shells Protocol

Study documents

ARS Model

Contains metadata to produce results - e.g. Excel workbook

Results

Single dataset containing all results

“Engine”

Conversion tool

Outputs / Display
Process overview

- SAP Shells Protocol
- Study documents
- Contains metadata to produce results - e.g. Excel workbook
- Single dataset containing all results
- “Engine”
- Conversion tool
- Outputs / Display
Process overview

SAP Shells Protocol

Study documents

Contains metadata to produce results - e.g. Excel workbook

ARS Model

Single dataset containing all results

Results

Static or interactive

Outputs / Display

“Engine” Conversion tool
Process overview

Study documents → ARS Model → Results → Outputs / Display
Hackathon project: ARS in action
Hackathon project

Reporting Event (CSR, DSUR, IB, etc.)

Analyses of Interest

Analysis Results
Data (ARD)

Analysis Results
Metadata (Technical Specs)

Outputs / Displays

Analysis Programming

Prospective!

ADaM Specs &
Programming

Automation Engine

SAP / Mock-up
shells

Standard TFL
Templates

Machine-readable!

Machine-readable!

Results along with
Metadata

Data Visualization

Data Visualization

Automation Engine

Automation Engine

RTF/PDF/HTML

Outputs / Displays

Machine-readable!

Specs Ingestion

ADaM

JSON, Excel, YAML, etc.

JSON, SAS, R, YAML, etc.

CSR Publishing

SAS / R / Python

Automation Engine

Results along with
Metadata

Analyses of
Interest
Hackathon project

Example study: [cdisc-org/sdtm-adam-pilot-project Public]
Hackathon project

Example study: cdisc-org/sdtm-adam-pilot-project

Objective: Calculate all results (formatted) required for the safety outputs
Example study:

Objective: Calculate all results (formatted) required for the safety outputs

1. Demographics table

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Placebo (N=XX)</th>
<th>Xanomeline Low Dose (N=XX)</th>
<th>Xanomeline High Dose (N=XX)</th>
<th>p-value [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>X,XXXX</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>XX.X (XX.XX)</td>
<td>XX.X (XX.XX)</td>
<td>XX.X (XX.XX)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>XX.X</td>
<td>XX.X</td>
<td>XX.X</td>
<td></td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>XX.X, XX.X</td>
<td>XX.X, XX.X</td>
<td>XX.X, XX.X</td>
<td></td>
</tr>
<tr>
<td>Min, Max</td>
<td>XX, XX</td>
<td>XX, XX</td>
<td>XX, XX</td>
<td></td>
</tr>
<tr>
<td>Age GROUP, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 65 years</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>X,XXXX</td>
</tr>
<tr>
<td>≥ 65 years</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td></td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>X,XXXX</td>
</tr>
<tr>
<td>Female</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>X,XXXX</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td></td>
</tr>
</tbody>
</table>
Example study:

Objective: Calculate all results (formatted) required for the safety outputs

2. Summary of Treatment-Emergent Adverse Events

<table>
<thead>
<tr>
<th>Categories, n (%)</th>
<th>Placebo (N=XX)</th>
<th>Xanomeline Low Dose (N=XX)</th>
<th>Xanomeline High Dose (N=XX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects with at least one event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEAE</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
</tr>
<tr>
<td>Related TEAE</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
</tr>
<tr>
<td>Serious TEAE</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
</tr>
<tr>
<td>Related Serious TEAE</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
</tr>
<tr>
<td>TEAE Leading to Death</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
</tr>
<tr>
<td>Related TEAE Leading to Death</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
</tr>
<tr>
<td>TEAE Leading to Dose Modification [a]</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
</tr>
<tr>
<td>TEAE Leading to Treatment Discontinuation</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
</tr>
</tbody>
</table>
Example study:

Objective: Calculate all results (formatted) required for the safety outputs

3. Summary of TEAE by System Organ Class and Preferred Term

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Preferred Term</th>
<th>Placebo (N=XX)</th>
<th>Xanomeline Low Dose (N=XX)</th>
<th>Xanomeline High Dose (N=XX)</th>
<th>Fisher’s Exact p-values [b]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Placebo vs.</td>
<td>Xanomeline vs. Low Dose</td>
<td>Xanomeline vs. High Dose</td>
<td></td>
</tr>
<tr>
<td>Number of subjects with at least one event</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>XX (XX.X)</td>
<td>X.XXX</td>
<td>X.XXX</td>
</tr>
</tbody>
</table>

<SOC 1>

<Preferred Term 1>

...<Preferred Term n>

<SOC 2>

<Preferred Term 1>

...<Preferred Term n>
Example study:

Objective: Calculate all results (formatted) required for the safety outputs

4. Summary of Observed and Change from Baseline by Scheduled Visits – Vital Signs

<table>
<thead>
<tr>
<th>Parameter (Units)</th>
<th>Visit</th>
<th>Placebo (N=XX)</th>
<th>Xanomeline Low Dose (N=XX)</th>
<th>Xanomeline High Dose (N=XX)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Change from Baseline</td>
<td>Observed</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td>XX.X (XX.XX)</td>
<td>XX.X (XX.XX)</td>
<td>XX.X (XX.XX)</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>xx.X</td>
<td>xx.X</td>
<td>xx.X</td>
</tr>
<tr>
<td>Min, Max</td>
<td></td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
</tbody>
</table>

...
Documents -> Model

Study documents → ARS Model → Results → Outputs / Display
Documents -> Model

Study documents ➔ ARS Model ➔ Results ➔ Outputs / Display
Documents -> Model

Study documents -> ARS Model -> Results -> Outputs / Display
Documents -> Model

ARS Model Results

<table>
<thead>
<tr>
<th>Level</th>
<th>Name</th>
<th>Order</th>
<th>analysisId</th>
<th>outputId</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary of Demographics</td>
<td>1</td>
<td>An01_05_SAFT_Summ_ByTrt</td>
<td>Out14-1-1</td>
</tr>
<tr>
<td>2</td>
<td>Summary of Subjects by Treatment</td>
<td>1</td>
<td>An03_01_Age_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Age</td>
<td>2</td>
<td>An03_01_Age_Com_Brt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Summary by Treatment</td>
<td>3</td>
<td>An03_02_Age.grp_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Comparison by Treatment</td>
<td>2</td>
<td>An03_02_Age.grp_Com_Brt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Age Group</td>
<td>3</td>
<td>An03_02_Age.grp_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Comparison of Subjects by Treatment</td>
<td>2</td>
<td>An03_02_Age.grp_Com_Brt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sex</td>
<td>4</td>
<td>An03_03_Sex_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Summary of Subjects by Treatment</td>
<td>1</td>
<td>An03_03_Sex_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Comparison of Subjects by Treatment</td>
<td>2</td>
<td>An03_03_Sex_Com_Brt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ethnicity</td>
<td>5</td>
<td>An03_04_Ethnic_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Summary of Subjects by Treatment</td>
<td>1</td>
<td>An03_04_Ethnic_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Comparison of Subjects by Treatment</td>
<td>2</td>
<td>An03_04_Ethnic_Com_Brt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Race</td>
<td>6</td>
<td>An03_05_Race_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Summary of Subjects by Treatment</td>
<td>1</td>
<td>An03_05_Race_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Comparison of Subjects by Treatment</td>
<td>2</td>
<td>An03_05_Race_Com_Brt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Height</td>
<td>7</td>
<td>An03_06_Height_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Summary by Treatment</td>
<td>1</td>
<td>An03_06_Height_Summ_ByTrt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Comparison by Treatment</td>
<td>2</td>
<td>An03_06_Height_Com_Brt</td>
<td></td>
</tr>
</tbody>
</table>
Documents -> Model

Study documents -> ARS Model -> Results -> Outputs / Display
Documents -> Model

- Study documents
- ARS Model
- Results
- Outputs / Display
Documents -> Model

Study documents ➡ ARS Model ➡ Results ➡ Outputs / Display
Documents -> Model

Study documents → ARS Model → Results → Outputs / Display
Documents -> Model

Study documents → ARS Model → Results → Outputs / Display
Model -> Results

Study documents -> ARS Model -> Results -> Outputs / Display
Model -> Results

Study documents → ARS Model → Results → Outputs / Display

Method used:

“Common Safety displays.xlsx"
Model -> Results

Method used:

```
# title: excel_to_r
# purpose: Reads in reporting event in .xlsx format and produces analysis results dataset
# Author: Malan Bosman
# date: 27Jun2023
```

"Common Safety displays.xlsx"

Results dataset
Model -> Results

Method used:

"Common Safety displays.xlsx"

Results dataset
Model -> Results

Method used:

“Common Safety displays.xlsx”

Results dataset
Model -> Results

Method used:
“Common Safety displays.xlsx”

Results dataset
Model -> Results

Method used:

“Common Safety displays.xlsx”

Results dataset
Method used:

“Common Safety displays.xlsx”

Results dataset
Model -> Results

Method used:

"Common Safety displays.xlsx"

Results dataset
Model -> Results

Method used:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>id</td>
<td>version</td>
</tr>
<tr>
<td>2</td>
<td>CSD</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Common Safety Displays</td>
<td></td>
</tr>
</tbody>
</table>

Highlights:
Model -> Results

Method used:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>id</td>
<td>version name</td>
</tr>
<tr>
<td>2</td>
<td>CSD</td>
<td>1 Common Safety Displays</td>
</tr>
</tbody>
</table>

Highlights:

- Performs groupings
- Subsets data
- Basic method: Nested loops through “ListOfPlannedAnalyses”, then each Operation linked to the AnalysisMethod (linked to each Analysis)
- Chunk of code performing each operation appends rows after each operation to create Analysis Results dataset
- Applies correct pattern / format to result
Results -> Outputs / display

Study documents → ARS Model → Results → Outputs / Display
Results -> Outputs / Display

Study documents -> ARS Model -> Results -> Outputs / Display

Static
Results -> Outputs / Display

1. Study documents
2. ARS Model
3. Results
4. Outputs / Display

Static
Interactive
Basic R-Shiny

Common Safety Displays

Select output: Out14-1-1

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Characteristic</th>
<th>Placebo (N=85)</th>
<th>Xanomeline High Dose (N=84)</th>
<th>Xanomeline Low Dose (N=84)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>n</td>
<td>86</td>
<td>84</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Mean</td>
<td>75.2</td>
<td>74.4</td>
<td>75.7</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>SD</td>
<td>8.59</td>
<td>7.89</td>
<td>8.29</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Median</td>
<td>76.0</td>
<td>76.0</td>
<td>77.5</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Q1</td>
<td>69.0</td>
<td>70.0</td>
<td>71.0</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Q3</td>
<td>82.0</td>
<td>80.0</td>
<td>82.0</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Min</td>
<td>52</td>
<td>56</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Max</td>
<td>89</td>
<td>88</td>
<td>88</td>
<td>0.000000000000004</td>
</tr>
</tbody>
</table>
Table 14.1.1

Summary of Demographics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Placebo (N=XX)</th>
<th>Xanomeline Low Dose (N=XX)</th>
<th>Xanomeline High Dose (N=XX)</th>
<th>p-value [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age [years]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>XX. X (XX, XX)</td>
<td>XX. X (XX, XX)</td>
<td>XX. X (XX, XX)</td>
<td>X.XXXX</td>
</tr>
<tr>
<td>Median</td>
<td>XX. X</td>
<td>XX. X</td>
<td>XX. X</td>
<td></td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>XX, XX, XX. X</td>
<td>XX, XX, XX. X</td>
<td>XX, XX, XX. X</td>
<td></td>
</tr>
<tr>
<td>Min, Max</td>
<td>XX, XX</td>
<td>XX, XX</td>
<td>XX, XX</td>
<td></td>
</tr>
<tr>
<td>Age Group, n [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 65 years</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td>X.XXXX</td>
</tr>
<tr>
<td>≥ 65 years</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td></td>
</tr>
<tr>
<td>Gender, n [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td>X.XXXX</td>
</tr>
<tr>
<td>Female</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity, n [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td>X.XXXX</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td>XX (XX. X)</td>
<td></td>
</tr>
</tbody>
</table>

Basic R-Shiny app:

```r
library(shiny)

# Data
data <- read.csv("demographics.csv")

# UI
ui <- fluidPage(
  titlePanel("Study - CBISC 360"),
  column(2, tagList(
    basicShinyOutput("Summary of Demographics"),
    summaryOutput("Safety Population"))
)

# Server
server <- function(input, output) {
  output$Summary of Demographics <- basicShinyOutput("Summary of Demographics")
  output$safety_population <- summaryOutput("Safety Population")
}

# Run the application
shinyApp(ui, server)
```

```shell
R -e "library(shiny)
  data <- read.csv("demographics.csv")
  library(shiny)
  ui <- fluidPage(
    titlePanel("Study - CBISC 360"),
    column(2, tagList(
      basicShinyOutput("Summary of Demographics"),
      summaryOutput("Safety Population"))
  )
  server <- function(input, output) {
    output$Summary of Demographics <- basicShinyOutput("Summary of Demographics")
    output$safety_population <- summaryOutput("Safety Population")
  }
  shinyApp(ui, server)"
```
Study documents

ARS Model

Results

Outputs / Display

Results -> Outputs / Display

Shell:

Basic R-Shiny app:

Table 14.1.1
Summary of Demographics
Safety Population

Characteristics	Placebo (N=XX)	Xanomeline Low Dose (N=XX)	Xanomeline High Dose (N=XX)	p-value [1]
Age (years) n (%)				
< 65 years	XX (XX.X)	XX (XX.X)	XX (XX.X)	X.XXXX
≥ 65 years	XX (XX.X)	XX (XX.X)	XX (XX.X)	X.XXXX
Gender, n (%)				
Male	XX (XX.X)	XX (XX.X)	XX (XX.X)	X.XXXX
Female	XX (XX.X)	XX (XX.X)	XX (XX.X)	X.XXXX
Ethnicity, n (%)				
Hispanic or Latino	XX (XX.X)	XX (XX.X)	XX (XX.X)	X.XXXX
Not Hispanic or Latino	XX (XX.X)	XX (XX.X)	XX (XX.X)	X.XXXX

Analysis

Characteristic	Placebo (N=86)	Xanomeline High Dose (N=84)	Xanomeline Low Dose (N=84)	p-value
Age (Years) n	86	84	84	
Age (Years) Mean	73.2	74.4	75.7	
Age (Years) Median	76.0	76.0	77.5	
Age (Years) SD	(8.59)	(7.89)	(8.29)	
Age (Years) Q1	69.0	70.0	71.0	
Age (Years) Q3	82.0	80.0	82.0	
Age (Years) Min	52	56	51	
Age (Years) Max	89	88	88	

Show 100 entires
Concluding thoughts
Concluding thoughts

Automation
- Aim for automation
- Across industry

Open-source
- Quicker adoption
- Easier collaboration

User Experience
- Make it a priority
- Part of design
Next steps:

Common Safety Displays

Select output: Out14-1-1

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Characteristic</th>
<th>Placebo (N=88)</th>
<th>Xanomeline High Dose (N=84)</th>
<th>Xanomeline Low Dose (N=84)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>n</td>
<td>86</td>
<td>84</td>
<td>84</td>
<td>0.59340000000000004</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Mean</td>
<td>75.2</td>
<td>74.4</td>
<td>75.7</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>SD</td>
<td>(8.59)</td>
<td>(7.89)</td>
<td>(6.29)</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Median</td>
<td>76.0</td>
<td>76.0</td>
<td>77.5</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Q1</td>
<td>69.0</td>
<td>70.0</td>
<td>71.0</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Q3</td>
<td>82.0</td>
<td>80.0</td>
<td>82.0</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Min</td>
<td>52</td>
<td>56</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>Max</td>
<td>89</td>
<td>88</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>
Github repo: malanbos / ARS_R

E-mail: Malan.bosman@iconplc.com