
CDISC Public Webinar – Standards Updates and Additions

23 July 2015

Agenda

- Virology Therapeutic-Area User Guide (TAUG) v2.0, Public Review
 - Jon Neville, C-Path
 - Laura Butte, C-Path
- CDISC Online Education & Event Updates
 - John Ezzell, CDISC

Question & Answer

- 'Panelist': Question
 OR
- 'Presentation': Question

Examples:

Amy: What are new updates in the Virology TAUG? OR

CDISC: When can we start registering for the US Interchange?

Virology Therapeutic-Area User Guide (TAUG) v2.0, Public Review

Presented by Jon Neville, Critical Path Institute

Strength through Collaboration

Project Background

- Goal
 - Update Virology v1.0 to align with more recent development work, particularly in CFAST therapeutic areas
 - Create a high-level go-to source for virus studies (intervention/prophylaxis)

Focus

- Drug sensitivity testing (phenotypic and genotypic data)
- A more robust approach to handling virus nomenclature
- Multiple new concepts/examples based on recent development in Influenza and Chronic Hepatitis C
- Update user guide layout (concept-based as opposed to SDTM domain-based)

Inputs

- Virology v1.0
- Existing User Guides: Pharmacogenomics (PGx), Influenza and Chronic Hepatitis C
- FDA Guidance

Review Status Summary

- Internal Review
 - Concluded June 11th
 - Team received and responded to ~40 comments
- CDISC SRC Review
 - Received and addressed ~100 comments
 - Approval to post for public review on July 21
- Public Review
 - Happening now!
 - Anyone welcome to review and comment
 - Comment period closes 08/24/2015

Concepts Covered in v2.0

- Diagnosis and laboratory confirmation of infection
- Viral resistance (drug sensitivity testing)
- Viral Load
- Immune response
- Virus Nomenclature
- Analysis Data

Changes from v1.0

- Guide is organized by concept, not SDTM domain
- Immune response examples added (IS domain).
- Analysis data section added
- Proposed deprecation of Viral Resistance (VR) domain: Resistance data will be modeled in the Microbiology Susceptibility (MS) domain
- New approach to nomenclature: draft Organism Identifiers (OI) domain and ORGNAMID variable
 - Proposed deprecation of --NSTRN variable

Guide Layout- CFAST TAUG Style

CONTENTS

1 INTRODUCTION	
1.1 PURPOSE	
1.2 ORGANIZATION OF THIS DOCUMENT	
1.3 CONCEPT MAPS	
1.4 CONTROLLED TERMINOLOGY	
1.5 RELATIONSHIPS TO OTHER STANDARDS	
1.5.1 Summary of Changes from Version 1.0	
1.6 KNOWN ISSUES	6
2 OVERVIEW	7
3 SUBJECT AND DISEASE CHARACTERISTICS	
3.1 DIAGNOSIS, CONFIRMATION OF INFECTION, AND VIRUS-TYPING	
3.1.1 Examples for Diagnosis, Confirmation of Infection, and Virus-Typing	
3.2 VIRUS NOMENCLATURE	
3.2.1 Example for Virus Nomenclature	
4 DISEASE ASSESSMENTS	
4.1 RESISTANCE TESTING	
4.1.1 Examples for Resistance Testing	
4.2 VIRAL LOAD	
4.2.1 Examples for Viral Load	
4.3 HOST IMMUNE RESPONSE	
4.3.1 Examples for Host Immunogenic Response	
5 ANALYSIS DATA	26
5.1 SUBJECT-LEVEL VARIABLES	
5.1 SUBJECT-LEVEL VARIABLES	
5.1.1 Co-existing Diseases and Vira Co-infections	
5.1.3 Subgroup Variables	
5.1.5 Non-nost raxonomy at screening and at subsequent time tomis	
5.2 ANALYSIS DATA FORPHARMACOGENOMIC FINDINGS	
5.2.1 Descriptive Variables for Non-Host Taxonomy	
5.2.2 Derived Variables for Summary of Results at a Given Location	
5.2.3 Derived Variables	
5.3 ANALYSIS DATA FOR PHENOTYPIC RESULTS	
5.4 CONSOLIDATION OF PHENOTYPIC AND GENOTYPIC ANALYSIS DATA	
APPENDICES	33
APPENDIX A: PROJECT PROPOSAL	
APPENDIX A. TROJECTTROPOSAL APPENDIX B: CFAST VIROLOGY V2.0 STANDARDS TEAM	
APPENDIX D. CLAST VIROLOGT V2.0 STANDARDS TEAM	
APPENDIX D: FURTHER READING	
APPENDIX E: REPRESENTATIONS AND WARRANTIES, LIMITATIONS OF LIABILITY, AND DISCLAIMER	
TITE DET E. ALI ALDENTATIONS AND WARRANTES, EDITATIONS OF ERBEITT, AND DISCLAMER	5

Host Immune Response: Immunogenicity Specimen (IS) Domain

4.3.1 Examples for Host Immunogenic Response

Example 1

IS – Assumptions for the Immunogenicity Specimen Assessment Domain Model

 The Immunogenicity Specimen Assessments (IS) domain model holds assessments which describe whether a therapy provoked/caused/induced an immune response. The response can be either positive or negative. For example, a vaccine is expected to induce a beneficial immune response, while a cellular therapy such as erythropoiesis stimulating agents may cause an adverse immune response.

hemagglutination. The standard result titer is expressed as the inverse of this dilution.

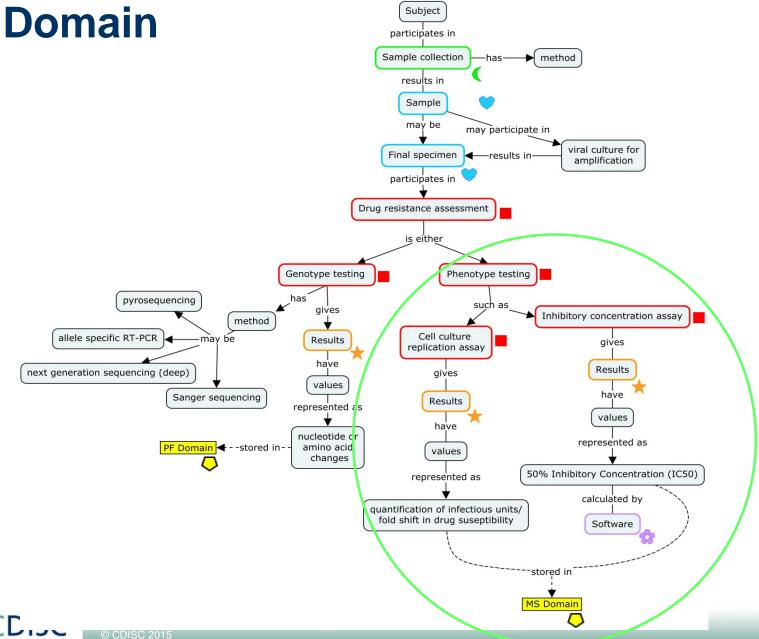
Row 2: Shows the results of an MN titer. ISORRES shows that a 1:64 dilution of subject serum was the most dilute sample capable of neutralizing Influenza virus in the assay. The standard result titer is expressed as the inverse of this dilution.

is.xpt

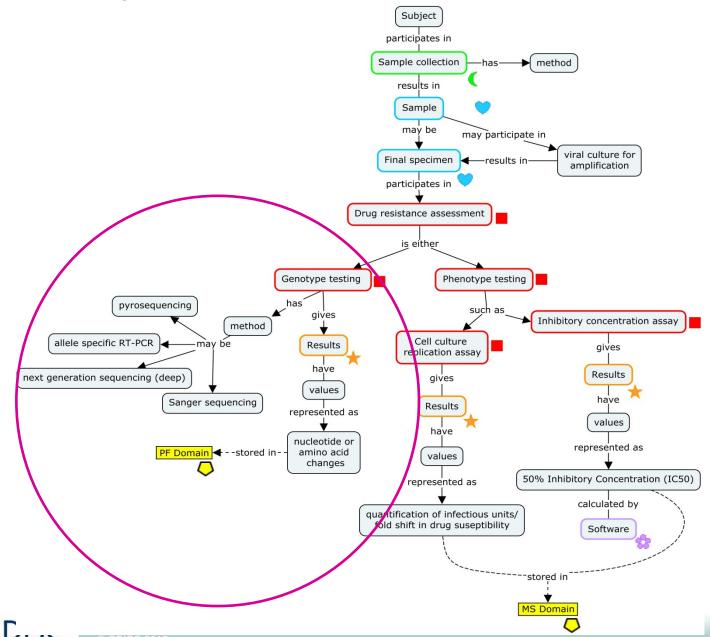
Row	STUDYID	DOMAIN	USUBJID	ISSEQ	ISREFID	ISNSPCES	ISTESTCD	ISTEST	ISCAT	ISORRES	ISORRESU	ISSTRESC
1	INFL456	IS	INF02-01	1	SAMPBL0201	Influenza A	INFAHIT	Hemagglutination Inhibition Antibody Titer	SEROLOGY	1:32	dilution	32
2	INFL456	IS	INF02-02	2	SAMPBL0202	Influenza A	INFAMNT	Microneutralization Antibody Titer	SEROLOGY	1:64	dilution	64

÷

	Row	ISSTRESN	ISSTRESU	ISSPEC	ISMETHOD	ISDTC
Γ	l (cont)	32	titer	SERUM	HEMAGGLUTINATION INHIBITION ASSAY	2011-08-08
	2 (cont)	64	titer	SERUM	MICRONEUTRALIZATION ASSAY	2011-08-08



Analysis Data Section


- Identification of co-morbidities of interest
- Subgrouping subjects
- Virus taxonomy: distinguishing between baseline and follow-up
- Subject-level variables associated with efficacy response
- Analysis data for genotypic and phenotypic findings

Phenotypic Viral Resistance, now in MS

Genotypic Viral Resistance: PF Domain

Nomenclature: The problem

- The terminology for classification/naming of different viruses at levels below species varies greatly.
- VR domain variables allowed for a two-level hierarchy only: --NSPCES (non-host species) and -NSTRN (Non-host strain)

There are typically more than two levels required to describe viruses

"Strain" is not necessarily the only name, nor even a valid name, for sub-species taxonomy

Virus Nomenclature Issue

	N	ISPCES			
	нιν	Influenza A	Hep C	Нер В	HPV
SPECIES level	Species	Species	Species	Species	Species
Subspecies Level 1	Туре	Subtype	Genotype	Genotype	Туре
Subspecies Level 2	Group	Strain	Subtype	Sub-genotype	
Subspecies Level 3	Subtype (or Clade)	NSTRN	2	Recombination Type	
Subspecies Level 4	Subclade		:		

Nomenclature, cont'd

Example 2

2000 DOI 10

This example shows how to represent data from an NA inhibition assay that is assessing influenza susceptibility to a neuraminidase inhibitor during an antiviral treatment trial. This assessment was done at three time points over a five-day period. Each time point compares a known reference strain to a subject-derived sample strain that has previously been identified as being of the same lineage based on genetic markers (thus the strain name ending in "-like"). Information about sample collection method, analysis software, and software version used to calculate the IC50 values are represented in SUPPVR and linked to the parent domain via VRSEQ. Information about the commercial kit used are represented in the Device Identifiers domain (DI), and linked to the VR domain via SPDEVID. Note that the values in VRGENTYP and VRGENRI are chosen based on the target molecule of the study drug, a neuraminidase inhibitor.

Some Required and Expected variables have been omitted in consideration of space and clarity. Controlled terminology is still under development, thus some values in the examples are not CDISC controlled terms. Verify demonstrated terminology against current standards before adopting it.

Rows 1, 4, and 7:	Show the response of the virus extracted from the subject based on drug concentrations required to produce 50% inhibition of the
	standard virus growth.
Rows 2, 5, and 8:	Show a reference viral sample response based on drug concentrations required to produce 50% inhibition of the standard virus growth.
Rows 3, 6, and 9:	Show the fold change of the response of the virus extracted from the subject compared to the reference viral sample response based on
	drug concentrations required to produce 50% inhibition of the standard virus growth. This is the subject sample result divided by the
	reference result.
Row 10:	Shows the net assessment of the trend in fold change (rows 3, 6 and 9) based on how the sample virus susceptibility to drug changed
	with respect to the control strain over the three time points. VRORRES/VRSTRESC show "Reduced Susceptibility".

w.sp	Ł										
Row	STUDYID	DOMAIN	USUBJID	SPDEVID	VRSEQ	VRGRPID	VRREFID	VRGENTYP	VRGENRI	VRTESTCD	VRTEST
1	INFL123	VR	INF01-01	10	1	1	SAMPMU0101	PROTEIN	NEURAMINIDASE	IC50T	IC50 Subject Sample Result
2	INFL123	VR	INF01-01	10	2	1	SAMPMU0101	PROTEIN	NEURAMINIDASE	IC50R	IC50 Reference Control Result
3	INFL123	VR	INF01-01		3	1	SAMPMU0101	PROTEIN	NEURAMINIDASE	IC50FCR	IC50 Fold Change from Reference
4	INFL123	VR	INF01-01	12	4	1	SAMPMU0101	PROTEIN	NEURAMINIDASE	IC50T	IC50 Subject Sample Result
5	INFL123	VR	INF01-01	12	5	1	SAMPMU0101	PROTEIN	NEURAMINIDASE	IC50R	IC50 Reference Control Result
6	INFL123	VR	INF01-01		6	1	SAMPMU0101	PROTEIN	NEURAMINIDASE	IC50FCR	IC50 Fold Change from Reference
7	INFL123	VR	INF01-01	12	7	1	SAMPMU0101	PROTEIN	NEURAMINIDASE	IC50T	IC50 Subject Sample Result
8	INFL123	VR	INF01-01	12	8	1	SAMPMU0101	PROTEIN	NEURAMINIDASE	IC50R	IC50 Reference Control Result
9	INFL123	VR	INF01-01		9	1	SAMPMU0101	PROTEIN	NEURAMINIDASE	IC50FCR	IC50 Fold Change from Reference
10	INFL123	VR	INF01-01		10	1	SAMPMU0101	PROTEIN	NEURAMINIDASE	ICNETAS	Inhibitory Concentration Net Assessment

1	Row	VRSPCIES	VRNSTRN	VRDRUG	VRORRES	VRORRESU	VRSTRESC	
	1 (cont)	INFLUENZA A	A/California/7/2009 (H1N1)-like	Investigamavic	0.20	nM	0.20	
	2 (cont)	INFLUENZA A	A/California/7/2009 (H1N1)	Investigamavir	0.21	Ma	0.21	
	3 (cont)	INFLUENZA A		Inv	A 42			
	4 (cont)	INFLUENZA A	A/California/7/2009 (H1N1)-like		warkal Th		a lintad in	VONCTON
	5 (cont)	INFLUENZA A	A/California/7/2009 (H1N1)		WORKS! IN	e value	es iistea in	VRNSTRN
	6 (cont)	INFLUENZA A		Inv				•
	7 (cont)	INFLUENZA A	A/California/7/2009 (H1N1)-like	🔤 are i	n fact STR	RAINS	ot Influenz	'a A
	8 (cont)	INFLUENZA A	A/California/7/2009 (H1N1)	Ins				u / (
	9 (cont)	INFLUENZA A		Investigamavir	21		21	
	10 (cont)	INFLUENZA A		Investigamavir	Reduced Susceptibility		Reduced Susceptibility	
				and the second se			· · · · · · · · · · · · · · · · · · ·	

Nomenclature Issue

2.3.1 Examples for Influenza Drug Sensitivity Testing

Example 1

This example shows a longitudinal assessment of genetic variation in the influenza neuraminidase gene from two subjects. These assessments look for changes in the Arginine (R) residue at position 292 in the neuraminidase protein over a period of five days, because this change is known to confer drug resistance¹⁷. PFORRES shows the one letter amino acid abbreviation more commonly seen in literature. PFSTRESC shows the result using standard Human Genome Variation Society (HGVS) nomenclature.

Some <u>Required</u> and Expected variables have been omitted in consideration of space and clarity. Controlled terminology is still under development, thus some values in the examples are not CDISC controlled terms. Verify demonstrated terminology against current standards before adopting it.

Row 1: Shows that the baseline assessment found no variation in R292 for subject INF01-01. Note that the experimental result (PFORRES) and the reference result (PFORREF) are the same. The standard result (PFSTRESC) value of "p_(=)" indicates there is no change detected.

- Rows 2-3: Show that R292 residue mutated to Lysine (K) on day 2 and remained that way through day 5 for subject INF01-01. Note that the experimental result (PFORRES) has changed to "K."
- Rows 4-6: Show that the baseline, day 2, and day 5 assessments found no variation in R292 for subject INF01-02.

27	-	~	27	-
ω	Π.	л.	Ð	
-	~	99	σ.	~

Physical Sec.	•								
Row	STUDYID	DOMAIN	USUBJID	PFSEQ	PFGENTYP	PFGENRI	PFTESTCD	PFTEST	PFCAT
1	INFLU123	PF	INF01-01	1	PROTEIN	NEURAMINIDASE	AA	AMINO ACID	PROTEIN VARIATION
2	INFLU123	PF	INF01-01	2	PROTEIN	NEURAMINIDASE	AA	AMINO ACID	PROTEIN VARIATION
3	INFLU123	PF	INF01-01	3	PROTEIN	NEURAMINIDASE	AA	AMINO ACID	PROTEIN VARIATION
4	INFLU123	PF	INF01-02	1	PROTEIN	NEURAMINIDASE	AA	AMINO ACID	PROTEIN VARIATION
5	INFLU123	PF	INF01-02	2	PROTEIN	NEURAMINIDASE	AA	AMINO ACID	PROTEIN VARIATION
6	INFLU123	PF	INF01-02	3	PROTEIN	NEURAMINIDASE	AA	AMINO ACID	PROTEIN VARIATION

		THERE	T						
Row	PFSPCIES	PFNSTRM	PFORRES	PFORREF	PFGENLOC	PFSTRESC	VISITNUM	VISIT	PFDTC
1 (conf)	INFLUENZA A	H3N2	R	R	292	p.(=)	1	BASELINE	2012-03-01
-			K	R	292	p.Arg292Lys	2	DAY 2	2012-03-02
3 (conf)	INFLUENZA A	H3N2	K	R	292	p.Arg292Lys	3	DAY 5	2012-03-05
4 (conf)	INFLUENZA A	H3N2	R	R	292	p.(=)	1	BASELINE	2012-03-01
	INFLUENZA A		R						
6 (cont)	INFLUENZA A	H3N2	R	This	doesi	n't woi	rk wel	I The	value

This doesn't work well. The values listed in PFNSTRN are Influenza Subtypes, not Strains.

Nomenclature solution: Organism Identifiers (OI) domain

- OI is a special purpose domain that is modeled after the Device Identifiers (DI) domain
- It allows for parsed nomenclature values to be condensed on a single identifier variable, *ORGNAMID*
- ORGNAMID can be used in relevant findings domains such as MS, PF, LB
- ORGNAMID is a link to the OI domain where fully parsed taxonomy values reside
- Relieves burden from parent domain (MS, PF, etc)

ORGNAMID and **OI** Dataset

ms.x	<u>pt</u>											
Row	STUDYID	DOMAIN	USUBJID	MSSEQ	MSGRPID	ORGNAMD	MSTESTCD	MSTEST	MSDRUG	MSORRES	MSORRESU	MSSTRESC
1	COINF1	MS	COINF1-01	1	1	HIV1MC	IC50S	IC50 Subject Result	Experimenavir	0.2	nM	0.2
2	COINF1	MS	COINF1-01	2	1	HIV1MB	IC50R	IC50 Reference Control Result	Experimenavir	0.21	nM	0.21
3	COINF1	MS	COINF1-01	3 ^{OR}	I I	OISEQ	IC50FCR	IC50 Fold Change from Reference	Experimenavir	0.95		0.95
4	COINFI	MS	COINF1-01	nd 4 nd ^H	irea 2 ou	HCV2C	IC50S	IC50 Subject Result	Heprevir	1.35	nM	1.35
5	COINF1	MS	COINF1-01	5	2	H77	IC50R	IC50 Reference Control Result	Heprevir	1.21	nM	1.21

oixpt							
Row	STUDYID	DOMAIN	ORGNAMID	OISEQ	OIPARMCD	OIPARM	OIVAL
1	STUDY123	OI	HIV1MC	1	SPCIES	Species	HIV
2	STUDY123	OI	HIV1MC	2	TYPE	Туре	1
3	STUDY123	OI	HIV1MC	3	GROUP	Group	M
4	STUDY123	OI	HIV1MC	4	SUBTYP	Subtype	С
5	STUDY123	OI	HIV1MB	1	SPCIES	Species	HIV
6	STUDY123	OI	HIV1MB	2	TYPE	Туре	1
7	STUDY123	OI	HIV1MB	3	GROUP	Group	M
8	STUDY123	OI	HIV1MB	4	SUBTYP	Subtype	В
9	STUDY123	OI	HCV2C	1	SPCIES	Species	HCV
10	STUDY123	OI	HCV2C	2	GENTYP	Genotype	2
11	STUDY123	OI	HCV2C	3	SUBTYP	Subtype	c
12	STUDY123	OI	H77	1	SPCIES	Species	HCV
13	STUDY123	OI	H77	2	GENTYP	Genotype	1
14	STUDY123	OI	H77	3	SUBTYP	Subtype	a

ORGNAMID

- ORGNAMID is sponsor defined, with the following constraints:
 - A unique ORGNAMID must represent a unique identity as represented in its combination of OIPARMCD/OIVAL pairs.
 - Study sponsors should populate ORGNAMID with <u>intuitive name</u> values based on either:
 - the name of the organism as reported by a lab, or
 - published references/databases where applicable and appropriate (e.g., when reference strain H77 is used in a HCV study, ORGNAMID for this strain should be populated with "H77" or "HCV1a-H77").

Quick Summary

- TAUG-Virology v2.0 available for public review until 08/24/15
- MS domain will be replacing VR domain for phenotypic drug sensitivity testing data
- New OI domain/ ORGNAMID variable addresses nomenclature issues
- Not all concepts represented in the guide were discussed in this presentation
- If you plan to review, please take note of section 1.6, known issues (some were discussed here today)
- We are on track to publish by end of September 2015

Comments may also be sent to Laura Butte, Project Manager, at LButte@c-path.org

Reviewing and commenting

Go to www.cdisc.org/therapeutic, scroll down

Therapeutic Area Standards

Therapeutic Area Public Review

New Draft Traumatic Brain Injury Therapeutic Area User Guide v1.0 Now Available for Public Review - Comments due September 21, 2015

The CDISC Therapeutic Area Data Standards User Guide for Traumatic Brain Injury (TAUG-TBI) Version 1.0 Draft is now available for public comment. The TAUG-TBI describes how to represent data pertaining to traumatic brain injury studies in adults. **See Instructions below**

New Therapeutic Area User Guide for Virology v2.0 Now Available for Public Review - Comments Due Monday August 24, 2015

The CDISC Therapeutic Area Data Standards User Guide for Virology (TAUG-Virology) Version 2.0 Draft is now available for public comment. The TAUG-Virology v2.0 describes the data endpoints for clinical studies focusing on anti-viral treatments including some concepts relevant to virus prophylaxis. **See Instructions below**

New ADaM Supplement to Diabetes Now Available for Public Review – Comments Due 21 August 2015

The CDISC Therapeutic Area Data Standards User Guide - Analysis Data Model Supplement to Diabetes Version 1.0 Draft is now available for public comment. See Instructions below

Instructions

Please access the document packages and provide comments using the CDISC Public Comment Tracker.

You will need to **login** or **register** for a CDISC portal account to use the tool. **Help** is also available on the Public Comment Tracker page. **Instructions on using the Public Comment Tool**

--Public Review--

Traumatic Brain Injury TAUG Comments due 21 September 2015 Virology v2.0 TAUG Comments due August 24, 2015 ADaM Supplement to Diabetes TAUG - Comments due 21 August 2015 SEND IG: Developmental and Reproductive Toxicology (DART) -Comments due 13 August 2015

Therapeutic Area Standards Downloads

Alzheimer's Disease v2 Asthma v1 Cardiovascular v1 Chronic Hepatitis C v1 Diabetes v1 Dyslipidemia v1 Influenza v1 Multiple Sclerosis v1 Pain v1 Parkinson's Disease v1 Polycystic Kidney Disease v1 QT Studies v1 Schizophrenia v1

Funding for this project was provided by the U.S. Food and Drug Administration

Q&A Session

CDISC Education Events Announcements

Learn CDISC from CDISC! Authoritative. Global. Vendor neutral.

Standards currently out for review

- Traumatic Brain Injury TAUG
 - Visit <u>http://cdisc.org/therapeutic</u> for more information.
 - Comments due 21 Sept 2015
- Virology v2.0 TAUG
 - Visit <u>http://cdisc.org/therapeutic</u> for more information.
 - Comments due 24 August 2015
- ADam Supplement for Diabetes
 - Visit <u>http://cdisc.org/therapeutic</u> for more information.
 - Comments due 21 August 2015
- SEND IG: Developmental and Reproductive Toxicology (DART)
 - Visit <u>http://www.cdisc.org/send</u> for more information.
 - Comments due 13 August 2015
- Click <u>here</u> to submit your comments.

Upcoming North America Public Courses and Events

Location	Dates	Courses Offered	Register By	Early Registration Discounts	Host
Durham, NC	27-31 July 2015	SEND, SDTM, ADaM	27 June 2015	Expired U Duke Clin	ical Research Institute BRSITY MEDICAL CENTER
Gaithersburg, MD	1-4 Sep 2015	SDTM, CDASH, ADaM	1 Aug 2015	Expired	1edImmune
Whippany, NJ	29 Sep – 2 Oct	SDTM, CDASH, ADaM	29 Aug 2015	Expired	Bayer HealthCare
Seattle, WA	6-9 Oct 2015	SDTM, ADaM, ODM/Define- XML Combo	6 Sep 2015	Expired	Axio PARTNERS IN RESEARCH
Chicago, IL (Interchange)	9-13 Nov	Visit http://www.cdisc.org/ public-courses for more details!	26 Oct 2015	31 July 2015	

Registration deadline indicates online deadline. Onsite registration is available before each event begins. Additional 2015 public training events can be found @ <u>http://cdisc.org/public-courses</u>.

Check CDISC website for up-to-date information on Public Courses

Upcoming Europe Public Courses and Events

Location	Dates	Courses Offered	Online Registration Deadline	Early Registration Discounts	Host
Eschborn (Frankfurt), Germany	28-31 Jul 2015	SDTM, CDASH, ADaM	28 June 2015	Expired AC	COVION
Brussels, Belgium	7-10 Sep 2015	SDTM, CDASH, ADaM	7 August 2015	Expired	Business & Decision Life\Scjences

Registration deadline indicates online deadline. Onsite registration is available before each event begins. Additional 2015 public training events can be found @ <u>http://cdisc.org/public-courses</u>.

Upcoming Asia Public Courses and Events

Location	Dates	Courses Offered	Online Registration Deadline	Early Registration Discounts	Host
Guangzhou, China	8-11 Sep 2015	SDTM, CDASH, ADaM	8 August 2015	Expired	Guangdong Provincial Hospital of Chinese Medicine
Osaka, Japan	14-18 Sep 2015	SDTM, CDASH, ADaM, ODM, Define-XML	14 Aug 2015	Expired	EX <mark>ICARE</mark>
Beijing, China	20-23 Oct 2015	SDTM, CDASH, ADaM, ODM, Define-XML	20 Sep 2015	Expired	PPD
Shanghai, China	26-29 Oct 2015	SDTM, CDASH, ADaM, ODM, Define-XML	20 Sep 2015	Expired	gsk GlaxoSmithKline 高兰素史克

Registration deadline indicates online deadline. Offline registration deadlines for each event available up until start date. Additional public training events can be found @ <u>http://cdisc.org/public-courses</u>.

Check CDISC website for up-to-date information on Public Courses

In-House Classroom Training

www.cdisc.org/private-courses

Benefits:

- Learn with your group using specific use cases and implementation questions
- On-location authorized instructor
- Cost-effective group training

Licensed Training - Exclusively for our Members

http://www.cdisc.org/licensed-training-subpage

Benefits:

- Standard qualification and training process
- All materials developed by standards teams
- Your instructor delivers training
- Training when your staff needs it
- Official CDISC Education certificates

You get the best training, just when you need it, and save time and money!

CDISC Online Training

Cdisc.trainingcampus.net

- Online training created with support from CDISC standards development teams
- New CDISC trainings developed in tandem with standards development
- Online courses benefits:
 - flexibility
 - more content
 - greater depth
 - updated frequently

Next Public Webinar

- Agenda:
 - Breast Cancer TA Public Review
 - ADaM Supplement for Diabetes TA Public Review
- <u>Date</u>: 12 August 2015, 11:00-12:30 PM EST

<u>Speakers:</u>

- John Owen, CDISC
- Susan Kenney, Maximum Likelihood
- Mario Widel, Eli Lilly
- Rachael Zirkle, Eli Lilly
- Register <u>here</u>.

Webinar details also at <u>www.cdisc.org/webinars</u>

Next Members Only Mini-Training

Agenda:

- Implementation of Oncology-Specific SDTM Domains
- <u>Date</u>:
 - 20 Aug 2015, 08:00 09:30 AM Central European Time (01:00 - 02:-30 AM Central USA Time)

• Speakers:

- Jan De Cleir, SGS Life Science Services
- Register <u>here</u>.

Webinar details also at <u>www.cdisc.org/webinars</u>

Access to these mini-training webinars is an exclusive benefit of being a member. Visit <u>www.cdisc.org/membership</u> for more information.

Any more questions?

Thank you for attending this webinar.

CDISC's vision is to: Inform Patient Care & Safety Through Higher Quality Medical Research

Strength through collaboration.

CDISC Members Drive Global Standards

Thank you for your support!

Learn CDISC from CDISC! Authoritative. Global. Vendor neutral.

© CDISC 2015