



# ADaM Pet Peeves: Things Programmers Do That Make Us Crazy

Nancy Brucken, Senior Standards Engineer, IQVIA

Sandra Minjoe, Senior Principal Clinical Data Standards Consultant, ICON PLC

October 13, 2025



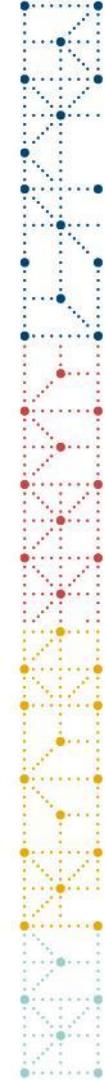
# Meet the Speakers

## Nancy Brucken

**Title:** Senior Standards Engineer

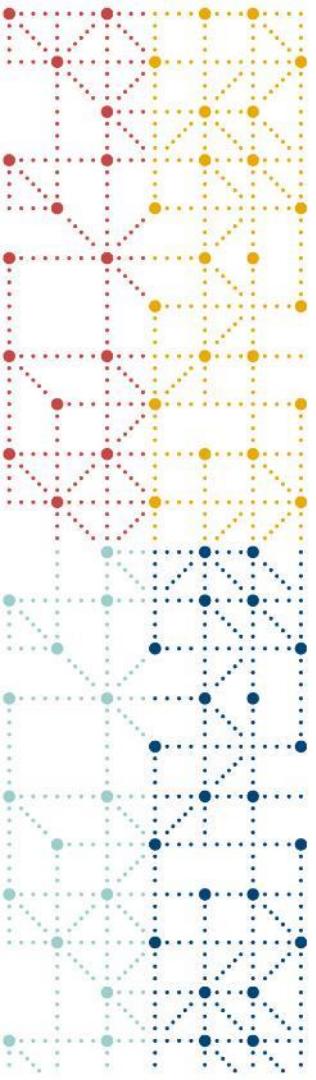
**Organization:** IQVIA

Nancy Brucken is a Senior Standards Engineer at IQVIA. She is a CDISC-authorized ADaM instructor, a member of the ADaM 3.0 and Informative Documents sub-teams, and co-leads the ADaM ADQRS sub-team. A graduate of Marietta College, she is a devoted Ohio State fan despite living in that state up north.


## Sandra Minjoe

**Title:** Senior Principal Clinical Data Standards Consultant

**Organization:** ICON

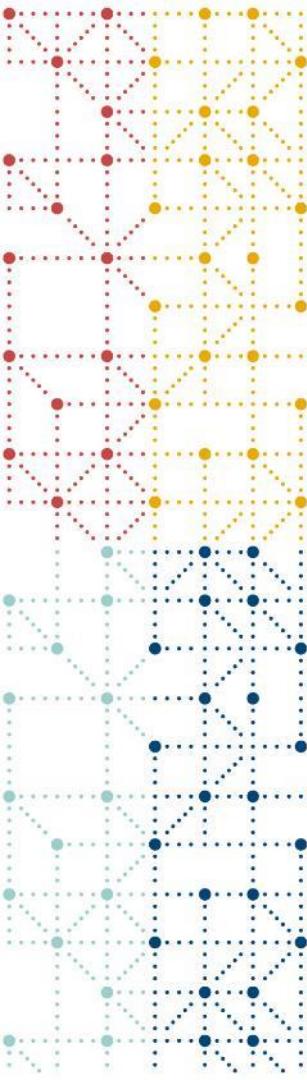

Sandra Minjoe is a Senior Principal Clinical Data Standards Consultant at ICON PLC. She has been part of the CDISC ADaM team since 2001, proposed structures that became ADSL and OCCDS, is a former ADaM Team Lead, is a certified CDISC ADaM trainer, and continues to work on sub-teams.





# Disclaimer and Disclosures

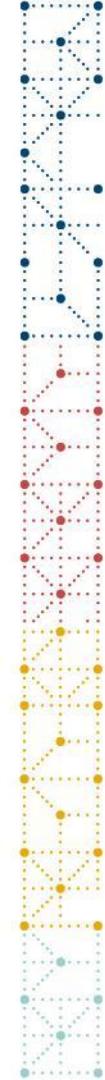
- *The views and opinions expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy or position of CDISC.*
- *The author(s) have no real or apparent conflicts of interest to report.*




# Agenda

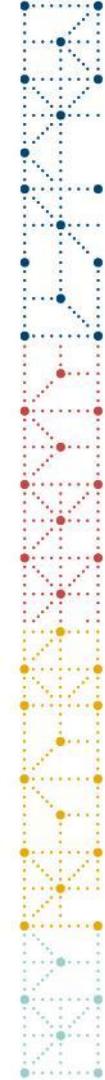
## Pet Peeves


1. Intermediate Datasets
2. Use of DTYPE
3. Findings About
4. Parameter Categories and Qualifiers
5. Variable Ordering
6. The Number of ADaM Datasets


For each, we provide a “better” recommended approach



# Pet Peeve #1: Intermediate Datasets


*(by pet Midnight)*





## Pet Peeve #1: Intermediate Datasets

- Complex analysis datasets with complicated derivations make it difficult to identify and trace the links back to SDTM
  - The equivalent of not showing your work in a school math problem
- The most complex derivations require the most traceability



# Intermediate Datasets Example

- Simple example: Overall Survival (Time to Death)
  - Derived as # days between randomization and death
  - For subjects who have not died, censor at latest of study end date, last assessment date, discontinuation date, ...
- More complex: Progression-Free Survival
  - Multiple potential event and censor dates
- Imagine all of these potential dates as separate variables
  - No way to show where each date came from
  - Dates in columns will not be ordered the same across all subjects

# Intermediate Datasets Example

- Example Intermediate dataset from Prostate Cancer TAUG

*addates.xpt*

| Row | STUDYID | USUBJID     | ASEQ | ADT       | ADTDESC                                  | ADTDESCD | ADY |
|-----|---------|-------------|------|-----------|------------------------------------------|----------|-----|
| 1   | ABC-123 | ABC-123-001 | 1    | 03MAR2014 | Date of Randomization                    | RANDDT   | 1   |
| 2   | ABC-123 | ABC-123-001 | 2    | 15OCT2014 | Change in Anti-Cancer Therapy            | RXCHGDT  | 227 |
| 3   | ABC-123 | ABC-123-001 | 3    | 15SEP2014 | Date of Last Tumor Assessment with No PD | LNOPDDT  | 197 |
| 4   | ABC-123 | ABC-123-001 | 4    | 03DEC2014 | Date Last Known Alive                    | LSTALVDT | 276 |
| 5   | ABC-123 | ABC-123-001 | 5    | 01NOV2014 | Date of Analysis Cut-off                 | CUTOFFDT | 244 |
| 6   | ABC-123 | ABC-123-002 | 1    | 16MAY2014 | Date of Randomization                    | RANDDT   | 1   |
| 7   | ABC-123 | ABC-123-002 | 2    | 08JUL2014 | Date of Last Tumor Assessment with No PD | LNOPDDT  | 49  |
| 8   | ABC-123 | ABC-123-002 | 3    | 03AUG2014 | Date of Tumor Assessment with PD         | PDPT     | 85  |

One row for each date that could be used as an event or censor

# Intermediate Datasets Example

- Example Intermediate dataset from Prostate Cancer TAUG

*addates.xpt*

| Row | STUDYID | USUBJID     | ASEQ | ADT       | ADTDESC                                  | ADTDESCD | ADY |
|-----|---------|-------------|------|-----------|------------------------------------------|----------|-----|
| 1   | ABC-123 | ABC-123-001 | 1    | 03MAR2014 | Date of Randomization                    | RANDDT   | 1   |
| 2   | ABC-123 | ABC-123-001 | 2    | 15OCT2014 | Change in Anti-Cancer Therapy            | RXCHGDT  | 227 |
| 3   | ABC-123 | ABC-123-001 | 3    | 15SEP2014 | Date of Last Tumor Assessment with No PD | LNOPDDT  | 197 |
| 4   | ABC-123 | ABC-123-001 | 4    | 03DEC2014 | Date Last Known Alive                    | LSTALVDT | 276 |
| 5   | ABC-123 | ABC-123-001 | 5    | 01NOV2014 | Date of Analysis Cut-off                 | CUTOFFDT | 244 |
| 6   | ABC-123 | ABC-123-002 | 1    | 16MAY2014 | Date of Randomization                    | RANDDT   | 1   |
| 7   | ABC-123 | ABC-123-002 | 2    | 08JUL2014 | Date of Last Tumor Assessment with No PD | LNOPDDT  | 49  |
| 8   | ABC-123 | ABC-123-002 | 3    | 03AUG2014 | Date of Tumor Assessment with PD         | PDAT     | 85  |

Sortable by date, so a reviewer can easily see the order of events per subject

# Intermediate Datasets Example

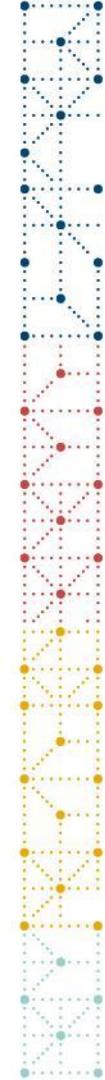
- Example Intermediate dataset from Prostate Cancer TAUG

*addates.xpt*

| Row | STUDYID | USUBJID     | ASEQ | ADT       | ADTDESC                                  | ADTDESCD | ADY |
|-----|---------|-------------|------|-----------|------------------------------------------|----------|-----|
| 1   | ABC-123 | ABC-123-001 | 1    | 03MAR2014 | Date of Randomization                    | RANDDT   | 1   |
| 2   | ABC-123 | ABC-123-001 | 2    | 15OCT2014 | Change in Anti-Cancer Therapy            | RXCHGDT  | 227 |
| 3   | ABC-123 | ABC-123-001 | 3    | 15SEP2014 | Date of Last Tumor Assessment with No PD | LNOPDDT  | 197 |
| 4   | ABC-123 | ABC-123-001 | 4    | 03DEC2014 | Date Last Known Alive                    | LSTALVDT | 276 |
| 5   | ABC-123 | ABC-123-001 | 5    | 01NOV2014 | Date of Analysis Cut-off                 | CUTOFFDT | 244 |
| 6   | ABC-123 | ABC-123-002 | 1    | 16MAY2014 | Date of Randomization                    | RANDDT   | 1   |
| 7   | ABC-123 | ABC-123-002 | 2    | 08JUL2014 | Date of Last Tumor Assessment with No PD | LNOPDDT  | 49  |
| 8   | ABC-123 | ABC-123-002 | 3    | 03AUG2014 | Date of Tumor Assessment with PD         | PDPT     | 85  |

Not shown: SRCDOM, SRCVAR,  
and SRCSEQ to point back to  
input data for each row

# Intermediate Datasets Example


- Example Intermediate dataset from Prostate Cancer TAUG

*addates.xpt*

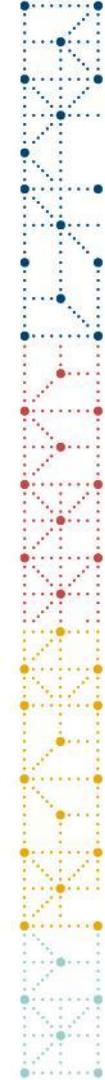
| Row | STUDYID | USUBJID     | ASEQ | ADT       | ADTDESC                                  | ADTDESCD | ADY |
|-----|---------|-------------|------|-----------|------------------------------------------|----------|-----|
| 1   | ABC-123 | ABC-123-001 | 1    | 03MAR2014 | Date of Randomization                    | RANDDT   | 1   |
| 2   | ABC-123 | ABC-123-001 | 2    | 15OCT2014 | Change in Anti-Cancer Therapy            | RXCHGDT  | 227 |
| 3   | ABC-123 | ABC-123-001 | 3    | 15SEP2014 | Date of Last Tumor Assessment with No PD | LNOPDDT  | 197 |
| 4   | ABC-123 | ABC-123-001 | 4    | 03DEC2014 | Date Last Known Alive                    | LSTALVDT | 276 |
| 5   | ABC-123 | ABC-123-001 | 5    | 01NOV2014 |                                          |          |     |
| 6   | ABC-123 | ABC-123-002 | 1    | 16MAY2014 |                                          |          |     |
| 7   | ABC-123 | ABC-123-002 | 2    | 08JUL2014 | Date of Last Tumor Assessment with No PD | LNOPDDT  | 197 |
| 8   | ABC-123 | ABC-123-002 | 3    | 03AUG2014 | Date of Last Known Alive                 | LSTALVDT | 276 |


Intermediate dataset ASEQ  
connects with Time-to-Event  
dataset SRC\* variables

| STUDYID | USUBJID     | PARAMCD | STARTDT   | SRCDOM  | SRCSSEQ | ADT       | AVAL | CNSR |
|---------|-------------|---------|-----------|---------|---------|-----------|------|------|
| ABC-123 | ABC-123-001 | PFS     | 03MAR2014 | ADDATES | 3       | 15SEP2014 | 197  | 1    |
| ABC-123 | ABC-123-002 | PFS     | 16MAY2014 | ADDATES | 3       | 03AUG2014 | 85   | 0    |

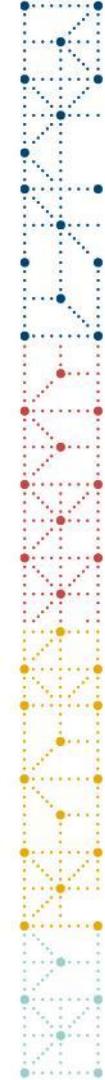


## Recommendation: Intermediate Datasets


- Intermediate datasets can be useful in complex derivations to:
  - Show traceability
  - Enable others to consider alternate approaches
  - Simplify coding
  - Speed up QC



## Pet Peeve #2: Use of DTYPE


*(by pet Sonoma)*

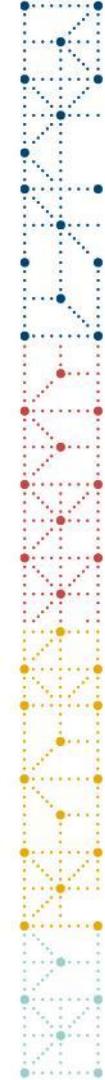




## Pet Peeve #2: Use of DTYPE

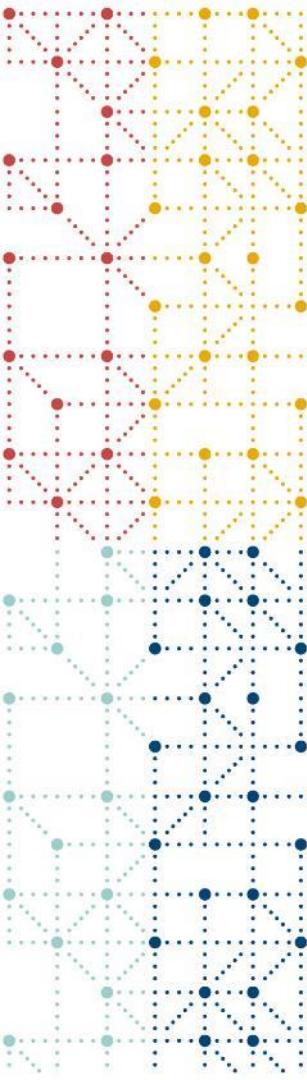
- The CDISC Notes for variable DTYPE describe 3 common situations where DTYPE is to be populated:
  - A new row is added within a parameter with the analysis value populated based on other rows within the parameter.
  - A new row is added within a parameter with the analysis value populated based on a constant value or data from other subjects.
  - An analysis value (AVAL or AVALC) on an existing record is being replaced with a value based on a pre-specified algorithm.
- The ADaMIG also states
  - “If a parameter is wholly derived, such as a Time-to-Event parameter, then it is a misapplication to populate DTYPE for all records in that parameter because, by definition, all records are derived using the same method.”
- CDISC Controlled Terminology exists for DTYPE, and is extensible
  - Note: DTYPE can be up to 200 characters




## DTYPE Issue 1: Extending DTYPE when a term already exists

- Some DTYPE Controlled Terminology doesn't sufficiently describe how the row was derived
  - Example: DTYPE = 'AVERAGE' ... average of what?
  - But metadata is used to describe exactly what was averaged
- Example: SAP says to add two rows:
  - One that averages AVAL of all post-treatment visits for an Average visit
  - Another that averages AVAL of the last 2 visits for an EndPoint visit
- What should be used for DTYPE?
  - Something like "AVERAGEALL" and "AVERAGE2"? Or "DERIVED"?
  - No! "AVERAGE" should be used for both

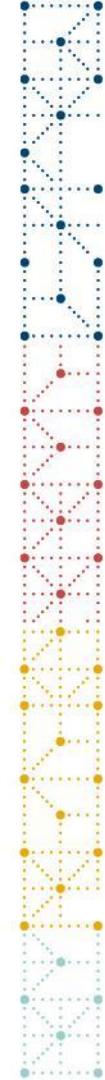
# DTYPE Issue 1: Extending DTYPE when a term already exists


- How to describe these different averages?
  1. Just use Metadata
  2. Add another variable, in addition to DTYPE

| PARAM       | VSSEQ | AVISIT   | AVISITN | AVAL | DTYPE   | DTYPEDTL             |
|-------------|-------|----------|---------|------|---------|----------------------|
| Pulse (bpm) | 101   | Baseline | 0       | 80   |         |                      |
| Pulse (bpm) | 102   | Week 1   | 1       | 70   |         |                      |
| Pulse (bpm) | 103   | Week 2   | 2       | 60   |         |                      |
| Pulse (bpm) |       | Average  | 6       | 70   | AVERAGE | All rows averaged    |
| Pulse (bpm) |       | EndPoint | 7       | 65   | AVERAGE | Last 2 rows averaged |

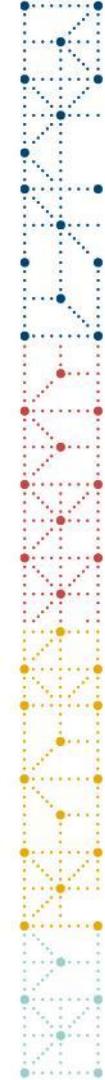


## DTYPE Issue 2: Explaining when an entire parameter is derived


- DTYPE is not used to describe how a whole parameter is derived
- Examples of derived parameters:
  - Pediatric study deriving BMI from height and weight
  - Total dose in an exposure dataset
- If you can't use DTYPE to describe detail on how the parameter was derived, what can you do in the data (in addition to metadata)?
  1. PARAMTYP = "DERIVED"
    - PARAMTYP was used in ADaMIG v1.0, deprecated in v1.1
    - Can still be used, and would be a good choice if older studies used it
  2. Add a custom variable such as DPARAMFL ("Derived Parameter Flag")
    - Set to "Y" for all records of a derived parameter

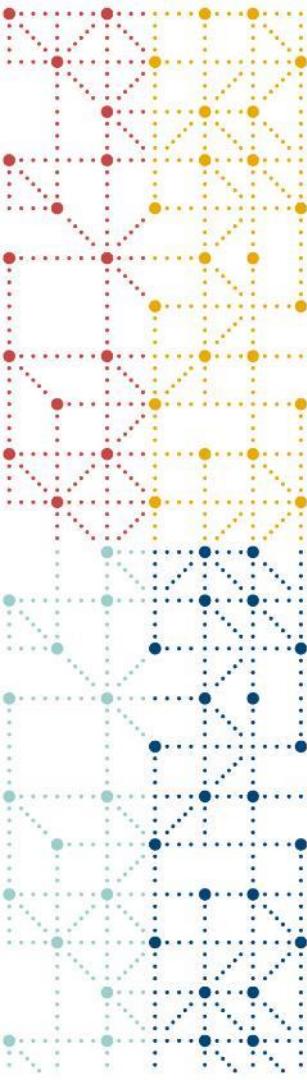


## Pet Peeve #3: Findings About


*(by pet Kuehner)*



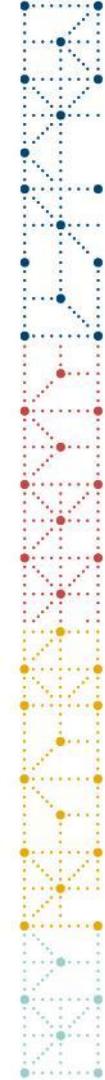



## Pet Peeve #3: Findings About

- ADaM dataset names must start with letters AD, but can use up to 6 more characters
- Programmers often get in the habit of
  - Naming an ADaM dataset as AD + 2-letter SDTM domain code
    - ADAE, ADEX, ADLB, ADVS, etc.
  - Labeling an ADaM dataset as SDTM label + “Analysis Dataset”  
... and that works in many circumstances
- But what would you expect to find in a dataset named ADFA with a label “Findings About Analysis Dataset”?



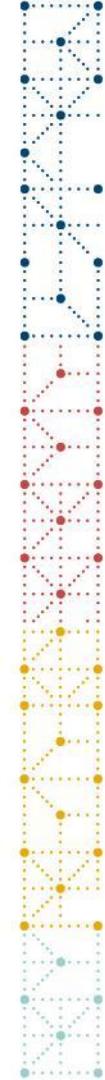
# Recommendation: Dataset Name


- Use a name and label that describe what it contains
  - Example: ADMIGRNE with a label of “Migraine Attributes Analysis Dataset”
- Ensure the dataset(s) meet analysis needs
  - FA can contain many different types of data
    - Might need to be split into more than one dataset, each analysis-ready for different sets of tables
    - Some data might be tacked onto other datasets (e.g. AE + FAAE)



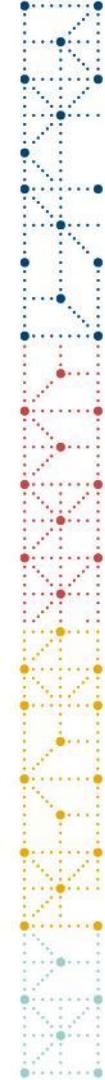
# Pet Peeve #4: Parameter Categories and Qualifiers

*(by pet Thor)*



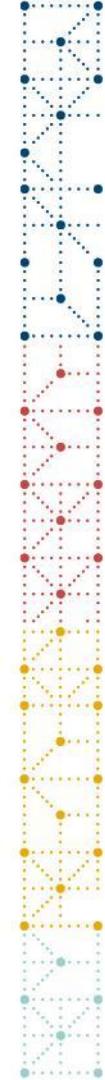



## Pet Peeve #5: Parameter Categories and Qualifiers


- The ADaM model and all versions of the ADaMIG state “PARAM must include all descriptive and qualifying information relevant to the analysis purpose of the parameter”
  - Allows analysis and review to make use of a single variable, PARAM (Parameter Name), to describe the result
  - PARAM often includes SDTM TEST content plus qualifiers

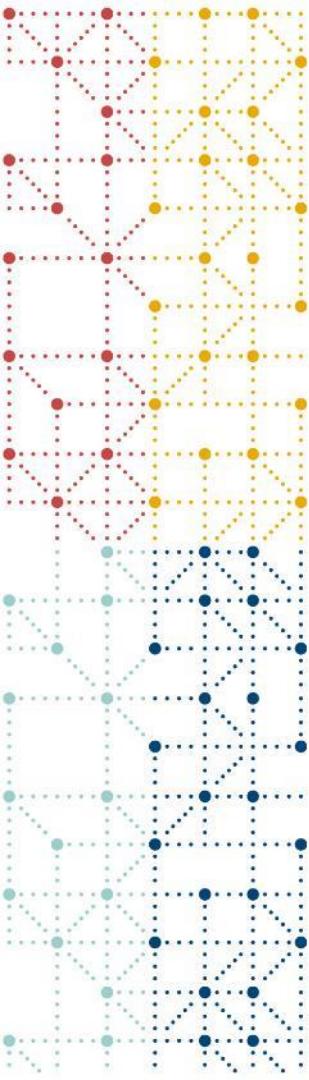
| PARAM content                         | SDTM variables needed   |
|---------------------------------------|-------------------------|
| Weight (kg)                           | VSTEST, VSSTRESU        |
| Supine Systolic Blood Pressure (mmHg) | VSPOS, VSTEST, VSSTRESU |
| Urine Glucose (mg/dL)                 | LBCAT, LBTEST, LBSTRESU |




# PARCATy Recommendations

- The same PARAM/PARAMCD value can't belong to more than one PARCATy
  - Example: Urine Glucose and Blood Glucose
    - SDTM uses the same test name with a qualifier
    - ADaM requires unique PARAM/PARAMCD values for each
- Once you've made unique PARAM/PARAMCD values, you can use PARCATy to group them
  - One set of unique parameters for each category (e.g. 'Urine', 'Blood')

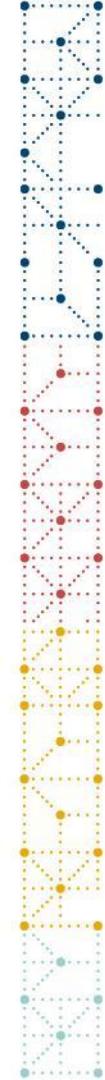



# PARQUAL History

- Draft ADaMIG v1.2 included variable PARQUAL
  - Not part of final version or in any official ADaM document
  - Included in some TAUGs and an FDA document
- PARQUAL was designed to
  - Hold 1 qualifier (typically something that belongs in the table title)
  - Be used with PARAM
- Only 2 use cases have been defined by the ADaM Team
  - Assessor, such as for Oncology response
  - Drug name/analyte, such as for PK parameters

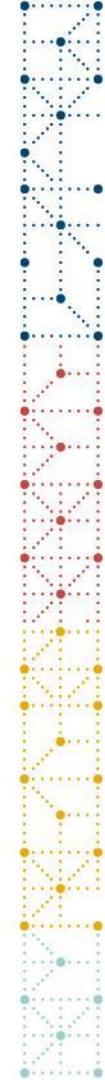


# PARQUAL Recommendations


- OK to use PARQUAL for defined use cases
  - Assessor, such as for Oncology response
  - Drug name/analyte, such as for PK parameters
- Don't use PARQUAL for anything else
- If using PARQUAL, be prepared to explain conformance issues
- Expect to see PARQUAL from ADaM Team in 2026

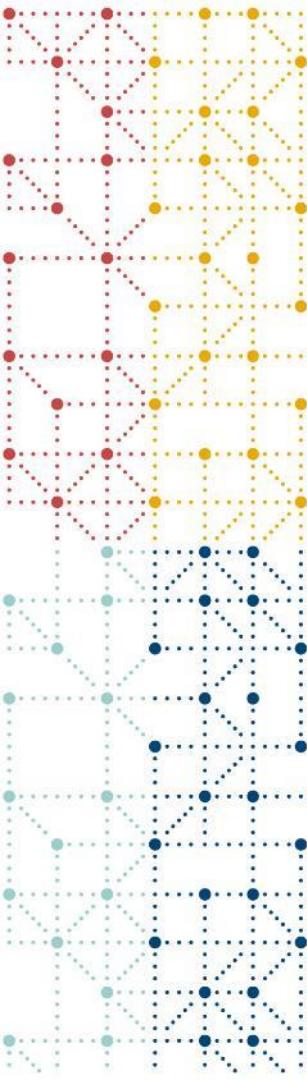


## Pet Peeve #5: Variable Ordering


*(by pet Kuehner)*



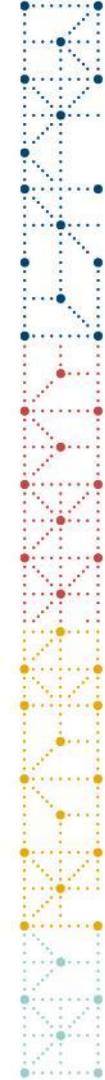



# Pet Peeve #5: Variable Ordering

- ADaM Model:
  - “the ordering of variables follows a logical model (not simply alphabetic)”
  - “It is recommended that the sponsor define a convention for ordering of variables within a dataset and then apply this ordering consistently for all analysis datasets.”
- What order do you use?
  - Common: All ADSL first, then the rest of the variables ordered similar to what is shown the IG
- How will a reviewer easily find what they need?

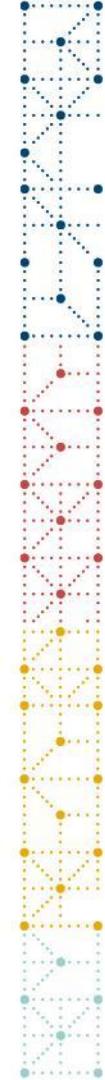


# Recommendation: Variable Ordering


- First: STUDYID, USUBJID
- Second: Key variables used for analysis
  - For BDS, that is probably PARAM/PARAMCD/PARAMN, AVIST/AVISITN, AVAL/AVALC, CHG, etc.
  - For OCCDS, that is probably --TERM/--TRT, dictionary terms
- Third: Traceability variables
- Interleave SDTM counterparts near their ADaM variables
  - VISIT near AVISIT, --STDTC near ASTDT, --STRESN near AVAL, etc.
- Last: end with supportive variables, such as
  - Other dataset-specific variables
  - Other ADSL variables

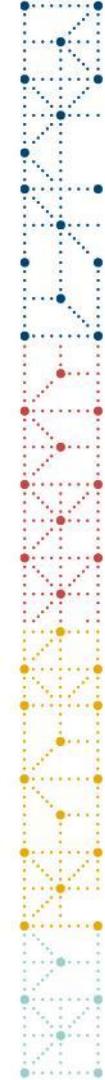


## Pet Peeve #6: Number of ADaM Datasets


*(by pet Zoe)*

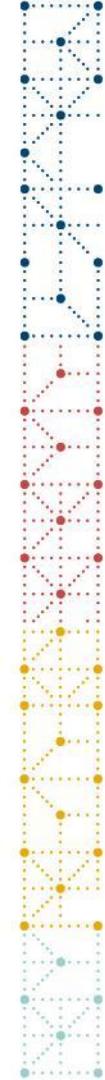





## Pet Peeve #6: Number of ADaM Datasets

- Nothing in the ADaM Model or ADaMIG says there must be a 1-1 relationship between SDTM and ADaM datasets
  - OK to combine multiple SDTM datasets into 1 ADaM dataset
    - ADSL contains pieces of multiple SDTM datasets
  - OK to split an SDTM dataset into multiple ADAM datasets for analysis purposes
    - FA split was described in prior slides




# Splitting SDTM Data: Examples to Consider

1. QS contains multiple questionnaires
  - ADaM ADQRS subteam recommends splitting by questionnaire
2. LB data needed for both safety and efficacy analyses
  - Safety and efficacy analyses can often include different populations, different visits, and different baseline definitions
3. EG with multiple quantitative and qualitative tests
  - Usually displayed on different tables using different statistical tests



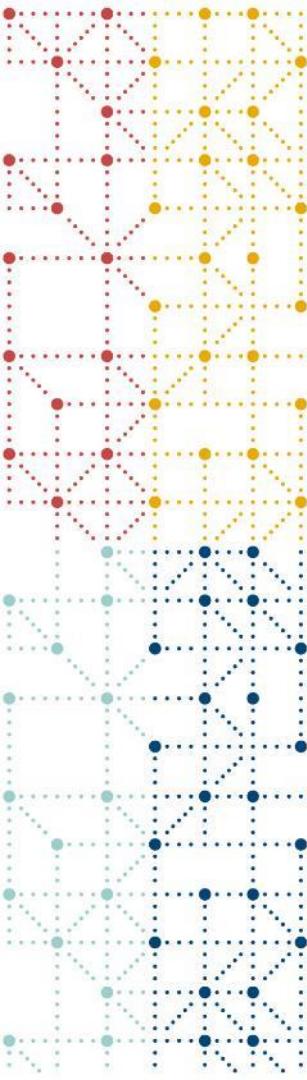
# Number of ADaM Datasets: Recommendation

- Consider analysis needs before creating dataset(s)
- Decide what breakdown would be easiest for
  - Deriving analysis values (via variable or value-level metadata)
  - Defining baseline
  - Producing table results
  - Agency review



# Summary of ADaM Pet Peeves: Things Programmers Do That Make Us Crazy

- Pet Peeves
  1. Intermediate Datasets
  2. Use of DTYPE
  3. Findings About
  4. Parameter Categories and Qualifiers
  5. Variable Ordering
  6. The Number of ADaM Datasets
- For each, we provided a “better” recommended approach


# Pet Peeve Questions?

Nancy Brucken  
IQVIA  
[nancy.brucken@iqvia.com](mailto:nancy.brucken@iqvia.com)



Sandra Minjoe  
ICON PLC  
[Sandra.Minjoe@iconplc.com](mailto:Sandra.Minjoe@iconplc.com)





Thank You!

