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Introduction
• Emerging technologies

• Repurposing data for AI and analytics



Emerging Technologies
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Expansion: Cost
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Source: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data (Wetterstand, 2023)

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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enter market

Used in cardiology trials

First human genome
sequenced

WGS becomes
cost-effective

NGS in oncology trials

Expansion: Volume



Data Repurposing for AI
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Questions 

12#ClearDataClearImpact

• How to streamline generation of SDTM data standards for emerging 
data sources?

• Are data standards only needed for submission? 

• What sort of information should be covered by those standards when it 
comes to multidimensional data?

• Can we generate data standards for unstructured data?



How can we effectively generate data standards for 
new data sources?
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Data Standardization and AI today 
• Shift on how we standardize clinical data
• Emerging regulatory requirements



• Shift on how we standardize clinical data
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• Shift on how we standardize clinical data
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Metadata attributes
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Shift on how we standardize clinical data
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Emerging regulatory requirements for AI
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Define the Question of Interest

Define the context of use for the AI model

Assess the AI Model Risk

Develop a Plan to Establish AI Model Credibility Within the Context of Use

Execute the plan

Document the Results of the  Credibility Assessment Plan and Discuss Deviations from the 
Plan 

Determine Adequacy of the AI Model for the Context of Use



In practice it means that:
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• We need to make sure the data we’re using is fit for purpose.

• We need to choose when to update our models.

• We need to re-train older models if we are to compare them with 
new ones.

• We need to keep evaluating if what we have is still up for the job.
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Illustrative example

2024 2025

Trial A
version 1.00

JAN MAR DEC JAN

Trial B
version 1.1

Trial C
version 1.2

Trial D
version 1.3

Update closed trials to n-1 version

• AI model training:
• Retroactively transform to data 

standard version to (n-1) version.
• Train models on n-1 version.
• Lock model.

• AI model inference:
• Transform data to n-1 version.
• Feed to model.

• AI model upgrade:
• Pick newer version of data 

standard.
• Repeat training.



Key Challenges in data standardization for AI
• Integration of Data from multiple sources
• Keeping up with updates to Data Standards



Integration of data from multiple sources

• Medical history
• Clinical studies
• Genetic databases
• Social media
• Registries
• Others
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Keeping up with the updates

• MedDRA library is updated once 
every 6 months

• Other standards could have more 
dynamic/unscheduled update 
cycles

• I need a ‘dashboard’ of which 
standards are relevant for my use 
case and which have been updated
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Gaps in SDTM data standards
• Multidimensional data
• Unstructured data



Multidimensional data sources
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Multidimensional Data
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The Challenge
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The Challenge

Calibration 
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Data provenance
Transformations

Preprocessing

• Parallel systems:
• Submission
• Analytics
 

• Findable
• Accessible
• Interoperable
• Reusable



Human Tumor Atlas Network (HTAN):
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• Standards

• Infrastructure 

• Community engagement

Examples of multidimensional Data Standards



Level 1Raw Data

Human Tumor Atlas Network (HTAN) through standards, 
infrastructure and community engagement
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Based on : https://www.nature.com/articles/s41592-025-02643-0?fromPaywallRec=false

• Lower Levels: Raw Data

• Higher Levels: Data processed 
by bioinformatics pipelinesLevel 1

Raw data



What is the best approach for new multidimensional 
data sources?
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SDTM framework, other standards and  computational workflows 

Current solution: BioCompute.

https://biocomputeobject.org/


Data not governed by standards
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Clinical notes (PDFs, Medical notes)

• Extracting data from PDFs using NLP models 
and the challenges of varying data quality.

• Need for machine-readable PDFs and the 
efforts within Novo to standardize data 
templates.



Future Directions

• Cross collaboration having in consideration emerging technologies 
between industry and academy consortiums.

• Rethink how new data modalities align with a tabular data standard
• Use of new technologies that could facilitate data standardisation 

(LLM).

• We should align into a minimal solution or expectation about 
metadata for new data sources.

• Integration of SDTM data standards in data analytics frameworks 
considering recent FDA requirements.



Q&A



Thank You!


