

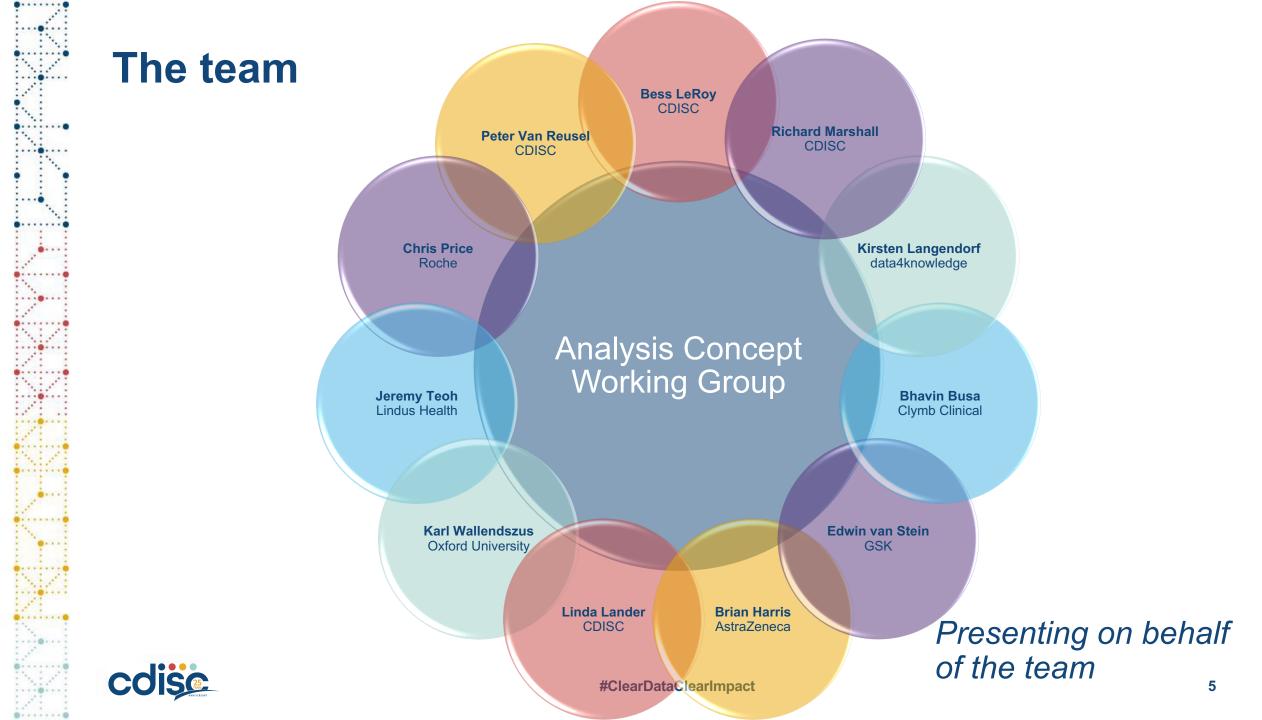


# Analysis Concepts definition – Initial perspectives from the CDISC working group

Kirsten Walther Langendorf / Partner at data4knowledge 15-MAY-2025



### **Meet the Speaker**


#### Kirsten Walther Langendorf

Title: Partner Organization: data4knowledge ApS

20+ years' experience in the pharmaceutical industry within programming, IT implementation & validation, process improvement, CDISC standards implementation, and statistics.

As partner at data4knowledge in Copenhagen, she has been involved in implementing various e2e metadata driven systems based on linked data technologies.

She actively contributes to the industry by volunteering with the CDISC Biomedical Concept curation team and the CDISC Analysis Concept team.



### Agenda

- 1. Background
- 2. Why do we need Analysis Concepts
- 3. Status and considerations on Analysis Concepts use case and modelling
- 4. Looking ahead

### Background

Analysis Concept Working group

# Statistics on the Analysis Concept Working group 😉

- First meeting: 22-Jan-2025
- # meetings so far: 8
- Duration/meeting: 1 hr
- Meet Wednesday every other week\*

| Time zone        | Start | End   |
|------------------|-------|-------|
| Central European | 15:00 | 16:00 |
| US Eastern Time  | 09:00 | 10:00 |
| India            | 19:30 | 20:30 |

- Current meeting participants
  - Bess LeRoy (CDISC BC and ARS team)
  - Bhavin Busa (Clymb Clinical)
  - Brian Harris (AstraZeneca)
  - Chris Price (Roche)
  - Edwin van Stein (GSK)
  - Jeremy Teoh (Lindus Health)
  - Karl Wallendszus (Oxford University)
  - Kirsten Langendorf (data4knowledge)
  - Linda Lander (CDISC BC team)
  - Peter Van Reusel (CDISC CSO)
  - Richard Marshall (CDISC ARS team)

\* Every week in April due to Interchange preparations



### Why do we need Analysis Concepts

### **Today's specification of analysis**

# Written in plain text o not machine readable

#### ➢Some details are left out

- o ften (at best) retrievable from the analysis executable program/define.xml
- reason why regulators requires SAS programs to be submitted

# Specifications are not software agnostic

- SAS versus R syntax
- $_{\odot}$  different set of options

| *know the document is old, but very likely the same is seen in newer documents |
|--------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------|

|   | Primary analysis from CDISC pilot study*                                                                                                                                                                                                                                                                                                                     |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | The primary analysis of the ADAS-Cog (11) at<br>Week 24 will use the efficacy population<br>with LOCF imputation for any missing values at<br>Week 24.                                                                                                                                                                                                       |
| 2 | An ANCOVA model will be used with<br>the <b>baseline score</b> , <b>site</b> , and <b>treatment</b><br>included as <b>independent variables</b> .<br><b>Treatment</b> will be included as a <b>continuous</b><br>variable, and results for a <b>test of dose</b><br><b>response</b> will be produced.<br><b>Interaction terms will not be investigated</b> . |
| 3 | If the test for <b>dose response is statistically</b><br><b>significant</b> , pairwise comparisons among<br>the 3 groups will be performed and evaluated<br>at a significance level of 0.05.                                                                                                                                                                 |





### 1. The endpoint

- What was done (define.xml) versus text
  - CHG variable. The change from baseline at week 24 not the value at week 24
  - PARAMCD='ACTOT'
  - EFFFL='Y' and AVISIT='Week 24 can be deduced from text

Analysis Variable(s) CHG

| Data References (incl.<br>Selection Criteria) | ADQSADAS[ EFFFL="Y" and ANL01FL="Y" and AVISIT="Week 24" and PARAMCD="ATOT" ] |
|-----------------------------------------------|-------------------------------------------------------------------------------|
|-----------------------------------------------|-------------------------------------------------------------------------------|



1

Week 24.

Primary analysis from CDISC pilot study

The primary analysis of the ADAS-Cog (11) at

Week 24 will use the efficacy population with LOCF imputation for any missing values at

## 2. Specifying the model in SAS – how to translate?

### From define.xml

### SAS implementation

| Display                                       | Table 14-3.01 Primary Endpoint Analysis: ADAS-Cog - Summary at Week 24 - LOCF (Efficacy Population)                                                                                                                                                |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| AnalysisResult                                | dose response analysis for ADAS-Cog changes from baseline                                                                                                                                                                                          |  |  |
| Analysis Parameter(s)                         | ACTOT=Adas-Cog(11) Subscore                                                                                                                                                                                                                        |  |  |
| Analysis Variable(s)                          | CHG                                                                                                                                                                                                                                                |  |  |
| Reason                                        | Primary Endpoint Analysis; pre-specified in SAP                                                                                                                                                                                                    |  |  |
| Data References (incl.<br>Selection Criteria) | ADQSADAS[ EFFFL="Y" and ANL01FL="Y" and AVISIT="Week 24" and PARAMCD="ATOT" ]                                                                                                                                                                      |  |  |
| Documentation                                 | SAP Section 10.1.1Linear model analysis of CHG for dose response; using randomized dose (0 for placebo; 54 for low dose; 81 for high dose) and site group in model. Used PROC GLM in SAS to produce p-value (from Type III SS for treatment dose). |  |  |
| Programming<br>Statements                     | proc glm dats = ADQSADAS;<br>where EFPFL-'Y' and ANLOIPL-'Y' and AVISIT-'Week 24' and PARAMCD-'ATOT';<br>class sitegrl;<br>model CBG - trtpn sitegrl;<br>run;<br>adqsadas<-read_xpt("CDISC Pilot Stud<br>/adam/datasets/adqsadas.xpt")             |  |  |

#### Primary analysis from CDISC pilot study

An ANCOVA model will be used with the **baseline score**, **site**, and **treatment** included as **independent variables**.

**Treatment** will be included as a **continuous** variable, and results for a **test of dose response** will be produced.

Interaction terms will not be investigated.

#### R implementation

adqsadas<-read\_xpt("CDISC Pilot Study/updated-pilot-submission-package/900172/m5/datasets/cdiscpilot01/analysis
/adam/datasets/adqsadas.xpt")</pre>

#From define.xml : EFFFL='Y' and ANL01FL='Y' and AVISIT='Week 24' and PARAMCD="ATOT adas\_cog\_11<-adqsadas%>%filter(PARAMCD=='ACTOT' & EFFFL=='Y' & AVISIT=='Week 24') # from define.xml : class sitegr1; # from define.xml: model CHG = trtpn sitegr1; ancova\_model <- lm(CHG ~ BASE + factor(SITEGR1) + TRTPN, data = adas\_cog\_11)</pre>

2

# Step 1: Test for dose response (significance of TRTPN coefficient)
df<-Anova(ancova\_model, type = "III")
p\_value\_dose\_response<-df['TRTPN',]\$`Pr(>F)`



### 3. Pairwise estimates made – but test for DR > 0.05

| Table 14-3.01<br>Primary Endpoint Analysis: ADAS Cog (11) - Change from Baseline to Week 24 - LOCF |                   |                                  | Primary analysis from CDISC pilot study |            |                                                                                                          |
|----------------------------------------------------------------------------------------------------|-------------------|----------------------------------|-----------------------------------------|------------|----------------------------------------------------------------------------------------------------------|
|                                                                                                    | Placebo<br>(N=79) | Xanomeline<br>Low Dose<br>(N=81) | Xanomeline<br>High Dose<br>(N=74)       |            | If the test for <b>dose response is statistically</b><br><b>significant</b> , pairwise comparisons among |
| Baseline                                                                                           |                   |                                  |                                         |            | the 3 groups will be performed and evaluated                                                             |
| n                                                                                                  | 79                | 81                               | 74                                      |            |                                                                                                          |
| Mean (SD)                                                                                          | 24.1 (12.19)      | 24.4 (12.92)                     | 21.3 (11.74)                            | 3          | at a significance level of 0.05.                                                                         |
| Median (Range)                                                                                     | 21.0 (5;61)       | 21.0 (5;57)                      | 18.0 (3;57)                             | U          |                                                                                                          |
| Week 24                                                                                            |                   |                                  |                                         |            |                                                                                                          |
| n                                                                                                  | 79                | 81                               | 74                                      |            |                                                                                                          |
| Mean (SD)                                                                                          | 26.7 (13.79)      | 26.4 (13.18)                     | 22.8 (12.48)                            |            |                                                                                                          |
| Median (Range)                                                                                     | 24.0 (5;62)       | 25.0 (6;62)                      | 20.0 (3;62)                             |            |                                                                                                          |
| Change from Baseline                                                                               |                   |                                  |                                         |            |                                                                                                          |
| n                                                                                                  | 79                | 81                               | 74                                      |            |                                                                                                          |
| Mean (SD)                                                                                          | 2.5 (5.80)        | 2.0 (5.55)                       | 1.5 (4.26)                              |            |                                                                                                          |
| Median (Range)                                                                                     | 2.0 (-11;16)      | 2.0 (-11;17)                     | 1.0 (-7;13)                             |            |                                                                                                          |
| p-value(Dose Response) [1][2]                                                                      |                   |                                  | 0.245                                   |            |                                                                                                          |
| p-value(Xan - Placebo) [1][3]                                                                      |                   | 0.569                            | 0.233                                   |            |                                                                                                          |
| Diff of LS Means (SE)                                                                              |                   | -0.5 (0.82)                      | -1.0(0.84)                              | 4          |                                                                                                          |
| 95% CI                                                                                             |                   | (-2.1;1.1)                       | (-2.7;0.7)                              | Poinvico o | omparison                                                                                                |
| p-value(Xan High - Xan Low) [1][3                                                                  | 3]                |                                  | 0.520                                   |            | omparison                                                                                                |
| Diff of LS Means (SE)                                                                              |                   |                                  | -0.5 (0.84)                             |            |                                                                                                          |
| 95% CI                                                                                             |                   |                                  | (-2.2;1.1)                              |            |                                                                                                          |



### We need better definitions

#### Reducing ambiguity

 Traditional narrative statistical analysis plans can contain ambiguities that lead to different interpretations. Analysis Concepts with standardized metadata structure *enforce precision* in specifying analysis settings and assumptions. Analysis Concepts create a structured way to document your statistical approaches, making regulatory review more efficient and reducing queries about your methodology.

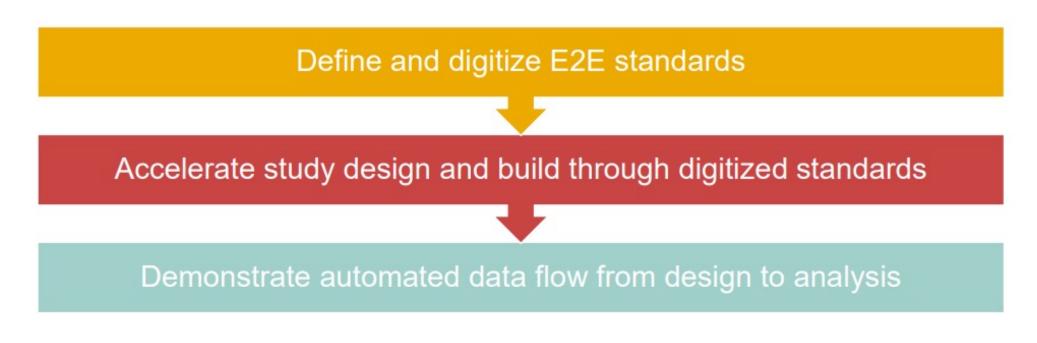
#### Enabling machine-readable analysis plans – automation

By structuring your analysis specifications as metadata rather than narrative text, you create *machine-readable* definitions that can directly link to statistical programming code. This reduces transcription errors and allows for automated validation of results against specifications.

#### Supporting traceability

 Analysis Concepts help maintain *clear linkage between protocol objectives, endpoints*, and the specific analytical methods applied. This creates an audit trail showing how each study objective was addressed through specific statistical approaches.

#### Streamlining collaboration

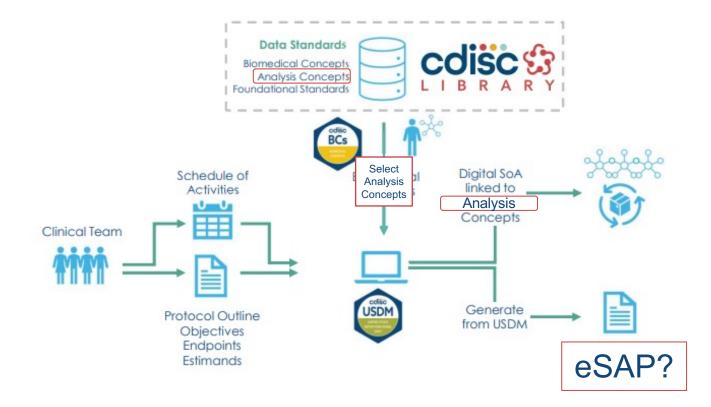

 Analysis Concepts provide a *common language* between statisticians, clinicians, data managers, and other stakeholders. The structured format helps non-statisticians understand the planned analyses without needing to interpret complex statistical notation.



### Analysis Concepts – scope of CDISC 360i

360i Journey: Ideas → Implementation → Common Practice

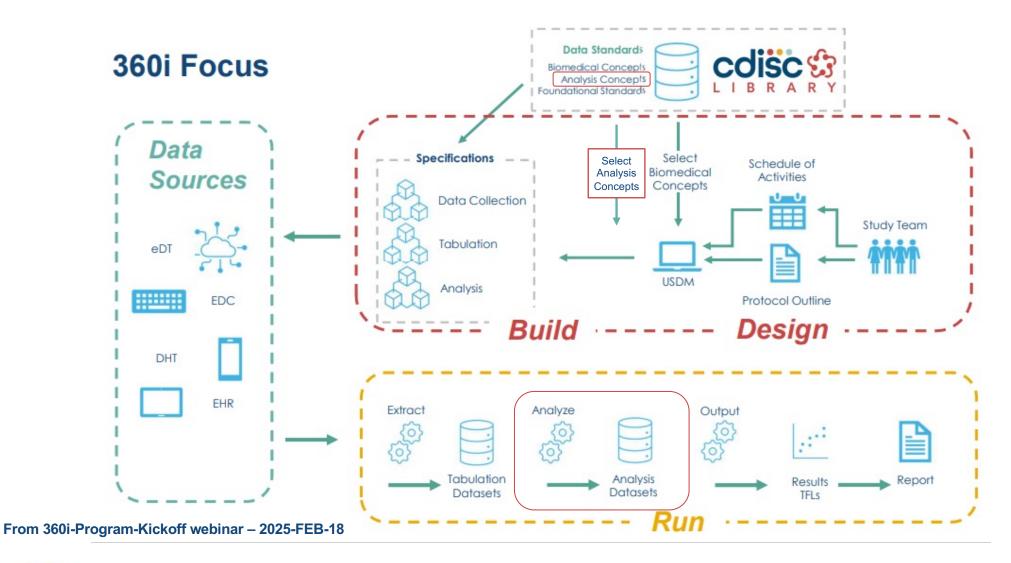





From 360i-Program-Kickoff webinar – 2025-FEB-18

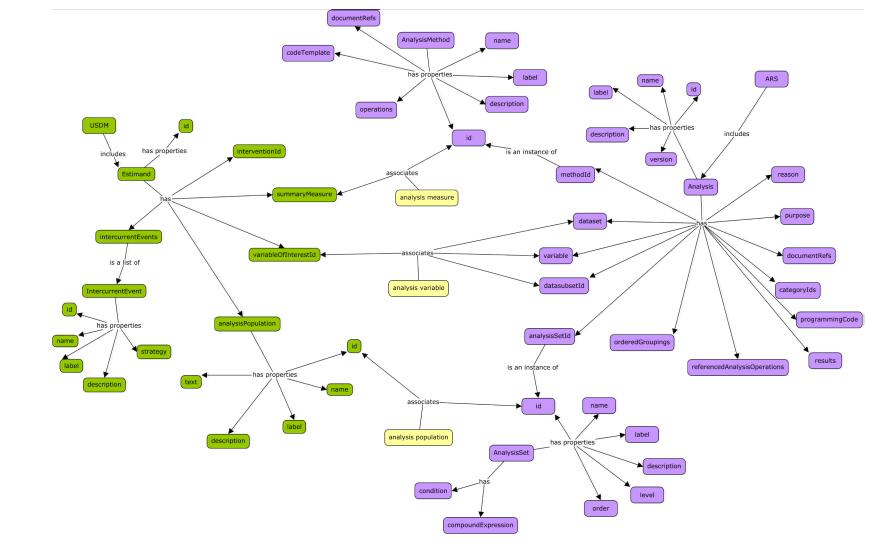


### Analysis Concepts – generate eSAP


### 360i Study Design



From 360i-Program-Kickoff webinar – 2025-FEB-18




### **Analysis Concepts – use for downstream automation**





### AC – the missing link between USDM and ARS





#ClearDataClearImpact

### Status and considerations on Analysis Concepts use case and modelling



### **Use cases**

- as a statistician, I can define the nuances of my analyses so that a human or AI programmer can accurately implement the analyses
- as a statistician, I can search for and reuse Analysis Methods
- as a statistician, I can connect methods that have different implementations, different implementation contexts
- as an academic, I can publish structured analysis design to journals
- as a programmer, I can understand the impact analysis of changes to SAP
- as a regulatory reviewer, I can understand unambiguously what analysis was done
- as a statistician, I can trace from the analysis conducted to the data point which contributed to the analysis

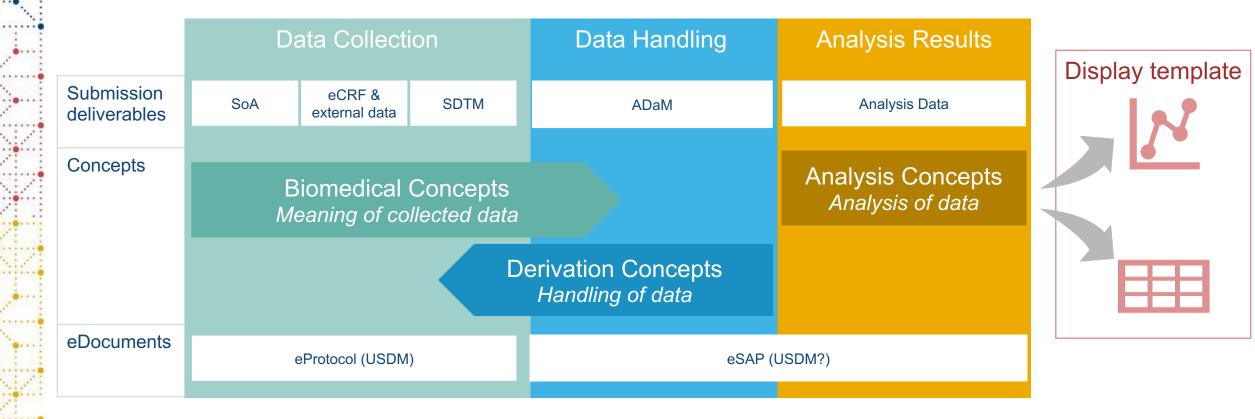




|           | Analysis Concept (AC)                                                                                                                                                   | Derivation Concept (DC)                                                                              |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Purpose   | Examines existing data or information to draw conclusions, identify patterns, or test hypotheses                                                                        | Generates new derived values from raw or derived data                                                |
| Direction | Typically works with completed measurements or observations to extract meaning                                                                                          | Transforms or processes data to create new representations                                           |
| Process   | Involves applying statistical methods, critical thinking, and interpretative frameworks to understand data                                                              | Uses mathematical operations, formulas, or algorithms to calculate new quantities                    |
| Outcome   | Produces insights, conclusions, or evaluations<br>based on the data - aggregated data (not subject-<br>level)                                                           | Creates derived data (subject level) that serve as inputs for subsequent analysis or derivations     |
| Example 1 | The p-value (from Type III Sums of Squares for treatment dose), based on linear model analysis of CHG for dose response; using randomized dose and site group in model. | CHG: Change from Baseline to Week 24 in ADAS Cog (11). Use LOCF is missing value at week 24.         |
| Example 2 | Mean value of CHG by visit                                                                                                                                              | CHG: Change from BASELINE in ADAS Cog (11)<br>by visit<br>BASELINE = 'Y' if ADAS Cog (11) at visit 2 |



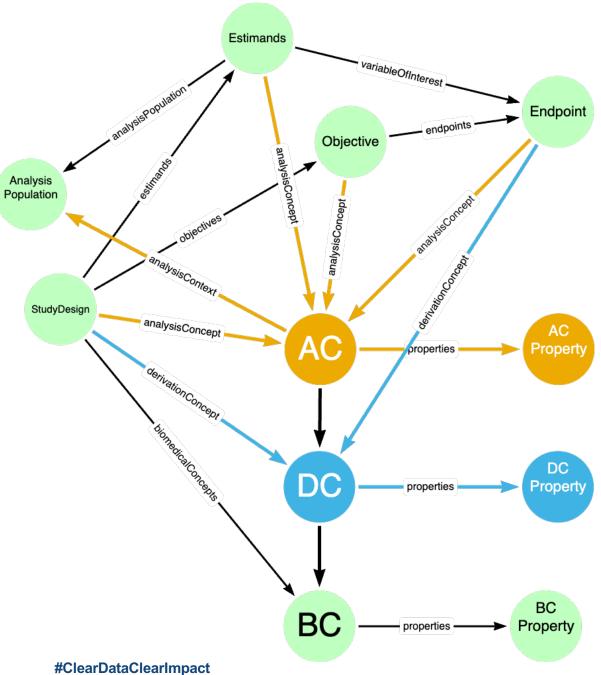



### **Concepts in the process**

|                     |       | D   | ata Collecti            | on   | Data Handling                          | Analysis Results                      | Analysis Display                 |
|---------------------|-------|-----|-------------------------|------|----------------------------------------|---------------------------------------|----------------------------------|
| Submise<br>delivera |       | SoA | eCRF & external data    | SDTM | ADaM                                   | Analysis Data                         | TFLs                             |
| Concep              | ts    |     | Biomedical eaning of co |      |                                        | Analysis Concepts<br>Analysis of data | ? Concepts<br>Display of results |
|                     |       |     |                         | D    | erivation Concepts<br>Handling of data |                                       |                                  |
| eDocum              | nents |     | eProtocol (USDM         | )    |                                        | eSAP (USDM?)                          |                                  |

source: reproduced from similar slide made by Edwin van Stein, PHUSE SDE, Utrecht 2025




### Concepts in the process – analysis data rendered for different displays



source: reproduced from similar slide made by Edwin van Stein, PHUSE SDE, Utrecht 2025



### **AC Basic model** - like BC in USDM





### Structuring the analysis text

The primary analysis of the ADAS-Cog (11) at Week 24 will use the efficacy population with LOCF imputation for any missing values at Week 24.

An ANCOVA model will be used with the baseline score, site, and treatment included as independent variables.

Treatment will be included as a continuous variable, and results for a test of dose response will be produced.

Interaction terms will not be investigated.

The primary analysis of the [ADAS-Cog (11)] at [Week 24] will use the [efficacy population] with [LOCF imputation] for any missing values at Week 24.

An [ANCOVA model] will be used with the [baseline score], [site], and [treatment] included as independent variables.

Treatment will be included as a [continuous variable], and results for a [test of dose response] will be produced.

[Interaction terms will not be investigated].



### **Statistical Analysis Mapping Table - example**

The primary analysis of the [ADAS-Cog (11)] at [Week 24] will use the [efficacy population] with [LOCF imputation] for any missing values at Week 24.

An [ANCOVA model] will be used with the [baseline score], [site], and [treatment] included as independent variables.

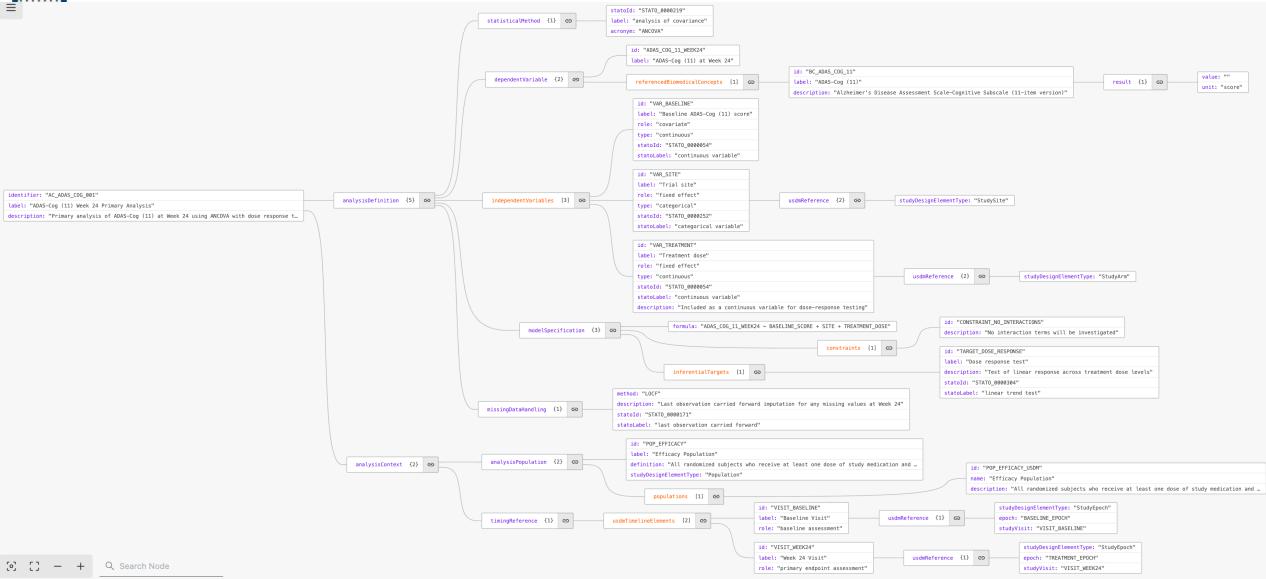
Treatment will be included as a [continuous variable], and results for a [test of dose response] will be produced.

[Interaction terms will not be investigated].

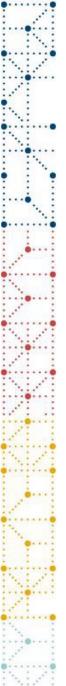
| Tagged Text                                | AC Parent<br>Property | AC Child Property    | AC Property Detail/Reference       | Value                                             |
|--------------------------------------------|-----------------------|----------------------|------------------------------------|---------------------------------------------------|
| ADAS-Cog (11)                              | analysisDefinition    | dependentVariable    | referencedBiomedicalConcepts.label | "ADAS-Cog (11)"                                   |
| Week 24                                    |                       | timingReference      | usdmTimelineElements.label         | "Week 24 Visit"                                   |
| efficacy population                        | analysisContext       | analysisPopulation   | label                              | "Efficacy<br>Population"                          |
| LOCF imputation                            |                       | missingDataHandling  | method                             | "LOCF"                                            |
| ANCOVA model                               | analysisDefinition    | statisticalMethod    | label                              | "analysis of covariance"                          |
| baseline score                             |                       | independentVariables | label                              | "Baseline ADAS-<br>Cog (11) score"                |
| site                                       |                       | independentVariables | label                              | "Trial site"                                      |
| treatment                                  |                       | independentVariables | label                              | "Treatment dose"                                  |
| continuous variable                        |                       | independentVariables | type                               | "continuous"                                      |
| test of dose response                      |                       | modelSpecification   | inferentialTargets.label           | "Dose response<br>test"                           |
| Interaction terms will not be investigated |                       | modelSpecification   | constraints.description            | "No interaction<br>terms will be<br>investigated" |



### Could the AC look like this?


| E {AC_ADAS_COG}                                                                                                                    |  |  |                                           |  |
|------------------------------------------------------------------------------------------------------------------------------------|--|--|-------------------------------------------|--|
| identifier: "AC_ADAS_COG_001"                                                                                                      |  |  | · · · · · · · · · · · · · · · · · · ·     |  |
| label: "ADAS-Cog (11) Week 24 Primary Analysis"                                                                                    |  |  | {analysisDefinition}                      |  |
|                                                                                                                                    |  |  | <pre>statisticalMethod: {3 keys}</pre>    |  |
| <pre>description: "Primary analysis of ADAS-Cog (11) at Week 24 using ANCOVA with dose response analysisDefinition: {5 keys}</pre> |  |  | <pre>dependentVariable: {3 keys}</pre>    |  |
|                                                                                                                                    |  |  | independentVariables: [3 items]           |  |
| analysisContext: {2 keys} -                                                                                                        |  |  | <pre>modelSpecification: {3 keys} +</pre> |  |
|                                                                                                                                    |  |  | <pre>missingDataHandling: {4 keys}</pre>  |  |
|                                                                                                                                    |  |  |                                           |  |
|                                                                                                                                    |  |  | {analysisContext}                         |  |
|                                                                                                                                    |  |  | analysisPopulation: {5 keys} +            |  |
|                                                                                                                                    |  |  | <pre>timingReference: {1 keys} +</pre>    |  |

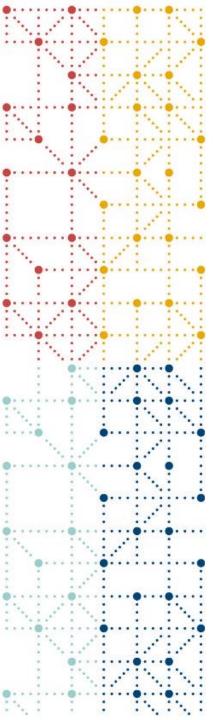





0 . . . . . . . 0

### **Could the AC look like this – expanding details?**




### Looking ahead



### Work ahead of us

- We need to work more on the AC model
  - $\,\circ\,$  Which structure and properties
- How does it fit into USDM
  - o Endpoint
  - Objective
  - o Estimands
- How Does it fit with ARS
- We should consider how we can 'templify' the ACs, since an analysis could be applied for many different endpoints
  - $_{\odot}\,$  User will use a template and 'configure' it for study level
- We need to make a PoC (360i) for a USDM study with BC -> DC -> AC
  - $_{\odot}\,$  We have not touched how derivations concepts are to be defined
  - $\,\circ\,$  How can we make the flow executable
- We need to investigate how/if to make eSAP





### Thank You!

Contact:

Bess LeRoy bleroy@cdisc.org

