

Advancing Clinical Trial Analysis: Bridging Gaps in Hierarchical Composite Endpoints Implementation

Presented by Christoffer Bäckberg, Statistical Programming Associate Director, CVRM, AstraZeneca

Meet the Speaker

Christoffer Bäckberg

Title: Statistical Programming Associate Director Organization: AstraZeneca

Education: Biotechnology At AstraZeneca for 6 ½ years as Statistical Programmer

Disclaimer and Disclosures

- The views and opinions expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy or position of CDISC.
- The author has no real or apparent conflicts of interest to report.

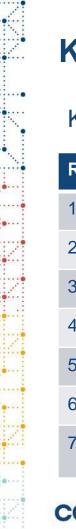
Agenda

- 1. Summary of Hierarchical Composite Endpoints (HCEs)
- 2. Implementation of HCEs in ADaM
- 3. Suggesting a Standardized CDISC Implementation of HCEs
- 4. Setting up working group

Summary of Hierarchical Composite Endpoints (HCEs)

Theory and Use

Hierarchical Composite Endpoints


- Ordinal ranking of two or more individual endpoints
 - From e.g most severe to least severe
 - Choose most severe event for each subject
- Complex and novel
 - Clinically & programmatically
 - CDISC adherence
 - ADaM implementation incomplete
 - Increased recent usage
- Win statistics and Maraca plot
- Can include endpoints of different types
 - Death events. Laboratory values. Symptom summary score
 - Time-to-Event (within an event)
 - Sooner event is worse

00	100
CO	

Outcome	Rank	TTE/ Value
"Worst"	1	уу
"2 nd Worst"	2	уу
"Best"	n	ZZ

Implementation of HCEs in ADaM

Practical example

Key Details

Kidney HCE. Two treatment groups. Fixed follow-up. No dropouts

Rank	Outcome	Subcategorization	Favorability	Source
1	Death	Timing (later is better)	Worst	ADTTE
2	Dialysis	Timing		ADTTE
3	Sustained eGFR<15	Timing		ADTTE
4	Sustained >=57% eGFR decline	Timing		ADTTE
5	Sustained >=50% eGFR decline	Timing		ADTTE
6	Sustained >=40% eGFR decline	Timing		ADTTE
7	Individual rate of change of GFR	Actual values (higher is better)	Best	ADLB

Hierarchical Composite Endpoints Specification (1/2)

Variable Name	Variable Label	Codelist/ Controlled Terms	Source / Derivation
name	description	valid values or codes and decodes	where the variable came from in the source data or how the variable was derived
SUBJID	Subject Identifier for the Study		ADSL.SUBJID
TRTP	Planned Treatment	Α, Ρ	ADSL.TRT01P
AVAL	Analysis Value		First, identify participants with any of the 1-6 dichotomous events by selecting the PARAM value in ADTTE corresponding to this event. Then select the most severe event of a participant and the corresponding timing of the event from ADTTE.AVAL. If ADTTE PARAM="All-cause death" and ADTTE.CSNR=0 then ADHCE.AVAL = 0*ADTTE.PADY + ADTTE.AVAL Base if ADTTE.PARAM="Dialysis" and ADTTE.CSNR=0 then ADHCE.AVAL = 1*ADTTE.PADY + ADTTE.AVAL and so on. Here we are using the numeric rank (minus one) of each type of an event, 0 for death, 1 for dialysis and so on, follow ing the order of the outcomes. If the participant did not experience any of the outcomes in 1-6 then these participants fall into category 7. Select records from ADLB with PARAM = "Rate of change of GFR" AVAL will be derived as, ADHCE.AVAL = 6*ADTTE.PADY + ADLB.AVAL – m+1, where mis the minimum of all values ADLB.AVAL(PARAM="Rate of change of GFR") for participants who did not have any of the dichotomous events.

PADY - Last study day included in the analysis (duration of the fixed follow-up)

Hierarchical Composite Endpoints Specification (2/2)

Variable Name	Variable Label	Codelist/ Controlled Terms	Source / Derivation
name	description	valid values or codes and decodes	where the variable came from in the source data or how the variable was derived
HCEGR1	HCE Group 1	"Death", "Dialysis", "eGFR < 15", "eGFR >= 57%", "eGFR >= 50%", "eGFR >= 40%", "eGFR"	If the result comes from ADTTE, then set to ADTTE.PARAM Else if ADLB.PARAM = "Rate of change of GFR" then HCEGR1 = "eGFR"
HCEGR1N	HCE Group 1 (N)		if HCEGR1 = "Death" then HCEGR1N = 1 Else if HCEGR1 = "Dialysis" then HCEGR1N = 2 Else if HCEGR1 = "eGFR < 15" then HCEGR1N = 3 Else if HCEGR1 = "eGFR >= 57%" then HCEGR1N = 4 Else if HCEGR1 = "eGFR >= 50%" then HCEGR1N = 5 Else if HCEGR1 = "eGFR >= 40%" then HCEGR1N = 6 Else if HCEGR1 = "eGFR" then HCEGR1N= 7
PADY	Primary Analysis Day		ADSL.PADY

Hierarchical Composite Endpoints

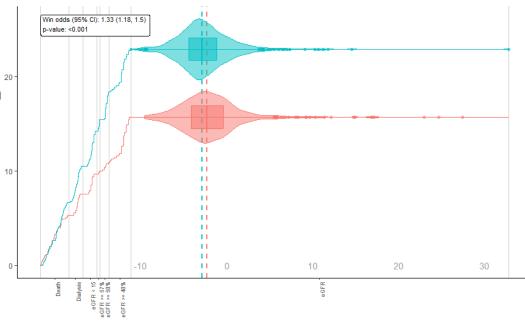
- Most severe event chosen per subject
- PADY: Primary Analysis Day
- AVAL for subsequent outcome immediately follows previous one
- AVAL (in derivation): TTE or value of continuous outcome variable
- HCEGR1: Most severe outcome per subject
- Additional core BDS variables

AVAL	HCEGR1
0*PADY+AVAL	Death
1*PADY+AVAL	Dialysis
n*PADY+AVAL-m+1	eGFR

Outcome	Rank	TTE/ Value
"Worst"	1	уу
"2 nd Worst"	2	уу
"Best"	n	ZZ

Hierarchical Composite Endpoints

SUBJID	TRTP	AVAL	HCEGR1	HCEGR1N	PADY	PARAM	PARAMCD
001	А	20	Death	1	100	Kidney hierarchical composite endpoint	KHCE
002	В	120	Dialysis	2	100	Kidney hierarchical composite endpoint	KHCE


Subject 001: Died on day 20 Subject 002: eGFR>=50% decline on day 10. Dialysis on day 20

Maraca Plot

- Win odds
 - Each patient's outcome in the active treatment arm is compared to each patient's outcome in the placebo arm
 - Results in a win, a tie or a loss
 - Proportion of wins plus half of all ties

Arm 🚻 A 🚻 P

Suggesting a Standardized CDISC Implementation of HCEs

Core ideas and considerations

Core Ideas

- TTE: BDS + Additional TTE variables
 - Specific details for certain variables (e.g. AVAL)
- HCE: BDS + Additional HCE variables (incorporating TTE variables)
 - Needs to consider the differences in possible endpoint data
- Possible endpoint data types:
 - Binary/categorical
 - Time-to-event
 - Numerical (lab values)
- Cover all possible combinations of endpoints

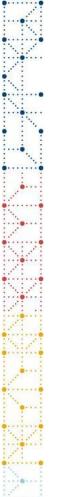
Table 3.3.6.1 Time-to-Event Variables for BDS Datasets

Variable Name	Variable Label	Туре	Codelist/ Controlled Terms	Core
STARTDT	Time-to-Event Origin Date for Subject	Num		Perm
STARTDTM	Time-to-Event Origin Datetime	Num		Perm
STARTDTF	Origin Date Imputation Flag	Char	(DATEFL)	Cond
STARTTMF	Origin Time Imputation Flag	Char	(TIMEFL)	Cond

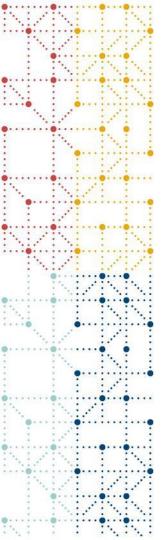
S 2021 Clinical Data Interchange Standards Consortium, Inc. All rights reserved 2021-11-29

CDISC Analysis Data Model Implementation Guide (1.3 Final)

Variable Name	Variable Label	Туре	Codelist/ Controlled Terms	Core
CNSR	Censor	Num		Cond
EVNTDESC	Event or Censoring Description	Char	3	Perm
CNSDTDSC	Censor Date Description	Char	5	Perm


Considerations

- Pairwise comparisons in ADaM dataset
- · Cases without fixed follow-up
- Separate document or append to existing? Both?
 - $\circ\,$ ADaM BDS for TTE Analyses
 - Addition
 - $\,\circ\,$ Examples in Commonly Used Statistical Analysis Methods
- Simplicity and extensibility
- R-implementation
 - $\circ\,$ PHUSE US 2024 presentation


Collaboration is needed

HCE Working Group

- Create CDISC HCE implementation documents
 - $\circ\,$ Approach dependent on outcome of collaboration
- Combine experience from:
 - o Theory
 - Existing CDISC documents
 - $\circ\,$ Clinical trial experience
- Working Group structure, timeline and "mode of action" TBD

Thank You!

