

Discover the Remarkable End-to-End Strategy behind Merck KGaA new Standard Library

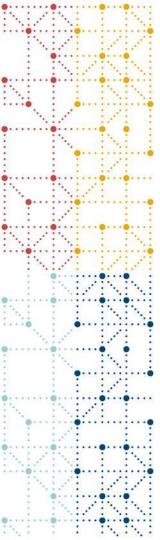
Presented by Catherine Laugel, PhD, Senior Data Standards Expert, DMMI, Merck KGaA

Meet the Speaker

Catherine Laugel

Title: Senior Data Standards Expert

Organization: Merck KGaA


- At Merck: Reference for data collection Standards, involved in study set-up and co-leading a trans functional Governance group for the review and approval of Merck KGaA Standard Library.
- 13+ years' experience in end-to-end data management of clinical trials, including database design, data collection and quality control, in both CRO and pharma companies.
- Education: PhD in Organic Chemistry in Fundamental Research from Strasbourg (France) and 2 years post-doctoral position in Berlin (Germany).
- Hobbies: If time permits between work and my 2 kids, spending remaining energy in training for triathlon!

Disclaimer and Disclosures

• The views and opinions expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy or position of CDISC.

• The author(s) have no real or apparent conflicts of interest to report.

Agenda

- 1. Overview of Merck Standard Team's new strategy to create CRF
- 2. Example of impact assessment on a Form
- 3. Detailed steps in our new process
- 4. Conclusion: advantages of this new process of creation of CRFs

Overview of Merck Standard Team's new strategy to create CRF

Overview of Merck Standard Team's new strategy to create CRF

Previously

SDTM Expert was involved at a later stage and many issues were discovered during SDTM mapping step, critical during submissions.

End-to-End strategy

Overview of Merck Standard Team's new strategy to create CRF

Previously

Data Collection Expert designed CRF without any SDTM annotation.

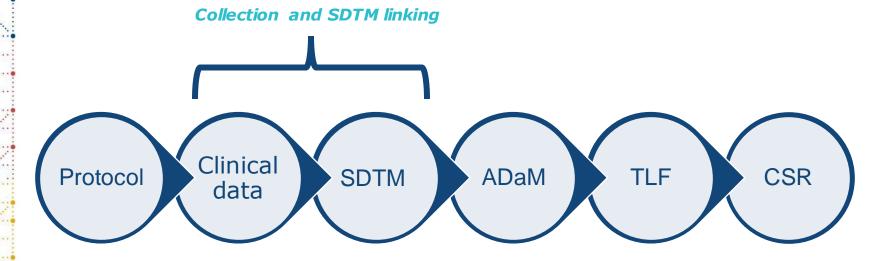
SDTM Expert was involved at a later stage and many issues were discovered during SDTM mapping step, critical during submissions.

End-to-End strategy

Now!

Data Collection Expert and SDTM Expert are responsible & accountable for data & SDTM collection, build in the same time, leading simultaneously to annotated CRF & defined structures.

Our Aim


Previously

OUR AIM

Our Vision: End to End Process, connecting the elements together

What we want to achieve with our new strategy of data .collection?

Have an end to end strategy from protocol to downstream

A better enhanced design to help the site in data entry to

avoid data error

Use CDASH for the data collection and SDTM if not available in CDASH

Standardization at Merck but also with other organizations

Reduce time to create data submission

WHAT ?

Increase quality score (data fitness)

Speed up the study build (in the future)

Cost & time saving

Potential reduction of the efforts in programming, data cleaning and reconciliation

Reduce the time to DB lock eventually

How we operate to make an improvement?

Look at the Form in detail to see what can be improved

Impact assessment based on ongoing studies

Look at the industry practice

Consider the medical requirement

Consider the sites side (more guidance, help with data entry, less data collection, less burden on site)

Consider the Sponsor side (reconciliation, programming, cleaning)

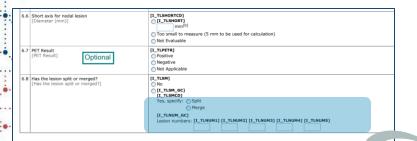
Present the proposal to the study team

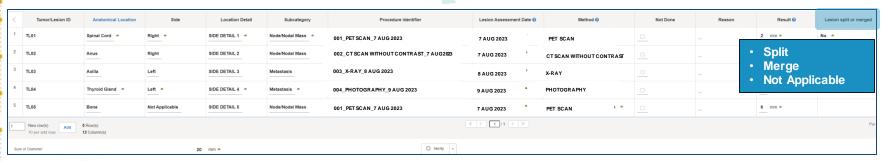
Post study implementation upgrade to standards post CCSG approval

HOW?

Check the downstream impact for the analysis

Use CDASH for the data collection or SDTM if not available in CDASH QC checks on CDASH/SDTM – work on QC automation

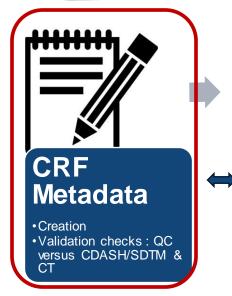

Leveraging in the near future the metadata repository for the forms build


Example of impact assessment on a Form

Forms Updated - Split & Merged lesions details removed

- How to make an improvement?
- Impact analysis split reporting represents only 0.029% of the total number of lesions
- Look at industry standard Not collected in industry standards good practices (e.g. EORTC, other Sponsors...). EORTC guidance doesn't describe that merged/split lesions need to be followed up separately with more details, details not present in EORTC CRF.
- · No impact in analysis
- Dynamism can be used
 - ✓ More convenient for sites (resolving major issues that were flagged by KAIZEN initiative)
 - ✓ Faster cleaning
 - ✓ Remove reconciliation effort between Imaging and Tumor Assessments

- Split detailed information (Lesion numbers) removed from CRF
- Instructions (eCCGs) to be provided to sites for the reporting of the sum of split lesions in the initial lesion



Detailed steps in our new process

Detailed steps in our new process

For today's presentation

- Creation
- Validation checks: QC versus SDTM & CT

P21 Checks

- •Run P21E or P21C (Individually)
- Combine Metadata
- •Run P21E (Combined) at Global Library Level

Detailed steps in our new process - CRF Metadata

CRF Metadata

- Creation
- Validation checks:
 QC versus
 CDASH/SDTM & CT

□ Creation of CRF Metadata

√ Form Level Naming Convention

<FormOID> (CRF data) will be: <DOMAIN NAME> <G or M or S> <2-digits serial number>
Form Title = <FormOID> <Form Name>

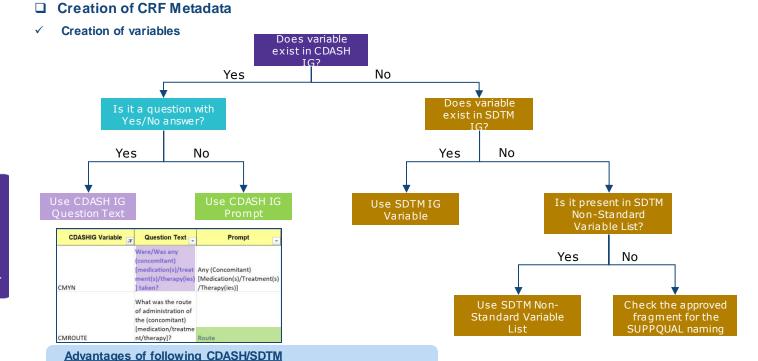
DOMAIN NAME = SDTM domain

'G' stands for Global. 'M' stands for Modification to Standards. 'S' stands for Study-Specific.

- Standard Forms without modifications will have the letter 'G'.
- Standard Forms with modifications will have the letter 'M'. However, if a standard Form gets modified after Go live, the letter 'G' remains the same, as FormOID are not modified post Go Live.
- New study-specific Forms will have the letter 'S'.

The 2-digits serial number indicates the # of unique forms within the same domain.

Example: **DMG01_Demographics.**



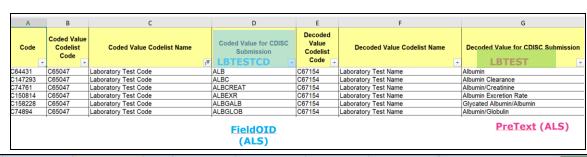
Detailed steps in our new process - CRF Metadata

Metadata

- Creation
- Validation checks:
 QC versus
 CDASH/SDTM & CT

Harmonization - Generic Labels that can be used in any trial

.Detailed steps in our new process – CRF Metadata



✓ Creation of variables – Lab parameters (denormalized structure)

Refer to SDTM Paired View File:

https://www.cdisc.org/system/files/members/standard/terminology/SDTM_paired_view_2024_03_29.xlsx

CDISC_LBTESTCD_will be used to create FieldOID, and CDISC_LBTEST_will be used for its corresponding PreText.

		Field OID to be							
FormOID	FieldOID	updated with LBTESTCD from CDISC	Ordinal	DraftFieldNumber	DraftFieldName	DraftFieldActive	VariableOID	PreText	PreText to be updated with LBTEST from CDISC
LBG01	ALB_LBORRES	ALB	6		ALB_LBORRES	TRUE	ALB_LBORRES	Albumin	Albumin
LBG01	ALT_LBORRES	ALT	7		ALT_LBORRES	TRUE	ALT_LBORRES	Alanine Aminotransferase (ALT)	Alanine Aminotransferase

CRF Metadata

- Creation
- Validation checks : QC versus CDASH/SDTM & CT

.Detailed steps in our new process - CRF Metadata

- □ Creation of CRF Metadata
- √ Naming conventions for codelists

The expectation is that <u>the name</u> of the codelists should include the **c-code** of the codelist in order to be able to link it back to CDISC.

CL_<Code>_<CDISC Submission Value>

Example: CL_C66767_ACN

Cod	Code	Codelist Extensible (Yes/No)	Codelist Name		CDISC Submission Value	V	CDISC Synonym(s)	
C66767		No	Action Taken with Study Treatment	ACN			Action Taken with Study Treatment	

CL_<Code>_<CDISC Submission Value>_Subset (if needed)

Example: CL_C74457_RACE_WHITE

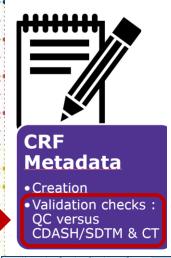
If codelist (CL) is not present in CDISC and thus is sponsor defined (SP)

CL_SP_<Name of the codelist>

Advantages of this naming convention

- · Easy to track that CDISC terminology is used
- Automatic check via programming that codelist is per CDISC terminology: gain of time

CRF Metadata


- Creation
- Validation checks : QC versus CDASH/SDTM & CT

.Detailed steps in our new process - CRF Metadata

QC of CRF Metadata

Each variable and codelist from ALS are QCed versus CDASH, SDTM and CT thanks to programmed QC checks. Outputs of metadata validation checks are reviewed and metadata are updated accordingly, if applicable.

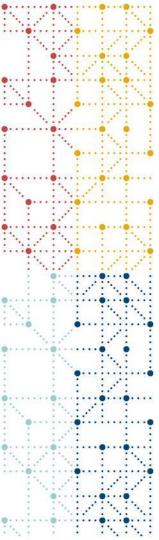
Check ID	Dataset	Message	Review Comment
		Collection variable "AEREL_PT" in Form "AEG01" does not	
		exist in CDASH or SDTM metadata for the domain. Review	
QUES01	AE	and correct as needed or document the deviation.	This is okay, as requested
		Collection variable "AEREL_IMRT" in Form "AEG01" does	
		not exist in CDASH or SDTM metadata for the domain.	
QUES01	AE	Review and correct as needed or document the deviation.	This is okay, as requested
		Collection variable "AEACN_PT" in Form "AEG01" does not	
		exist in CDASH or SDTM metadata for the domain. Review	
QUES01	AE	and correct as needed or document the deviation.	This is okay, as requested

QC validation checks

Conclusion : Advantages of this new process of creation of CRFs

Conclusion: Advantages of this new process of creation of ...CRFs

Take Home Message



Thank You!

Back-up slides

Detailed steps in our new process - CRF Metadata

✓ Creation of variables at study level

If variables with same format (text) or same codelist, and same PreText: same FieldOID will be used.

· If not possible, the below guidance is applied

➤ 2 variables PRTRT with different format (free text & codelist) or PreText, or same format with different codelists: use different FieldOIDs PRTRT and PRTRT_X

FormOID	FieldOID	DataFormat 🔻	DataDictionaryName -	ControlType -	PreText
PRG03	PRTRT_IMG	\$40	CL_C85492_METHOD_IMAG	RadioButton (Vertical)	Method
PRS02	PRTRT_ENDO	\$20	CL_C85492_METHOD	RadioButton (Vertical)	Procedure Name
PRS03	PRTRT_FEED	\$20	CL_SP_ROUTE_FEED	DropDownList	Procedure Name
PRG02	PRTRT	\$200		LongText	Procedure Name
PRG05	PRTRT_RT	\$40	CL_SP_PRCAT	DropDownList	Procedure Name
PRG07	PRTRT	\$200		LongText	Procedure Name

CRF Metadata

- Creation
- Validation checks : QC versus CDASH/SDTM & CT

.Detailed steps in our new process - CRF Metadata

- ✓ Creation of variables
- Miscelleanous
 - Use of –DAT (CDASH) and –TIM (CDASH) instead of DTC (SDTM)
 - Ensure Format \$200 if free text (ie : AE, CM, PR Forms)
 - ✓ Normalized structure vs denormalized structure

Use of normalized structure (Log)

Use SDTM XXTEST and XXORRES in table reporting (i.e.: PEG01 Form)

Log	PETEST	PEORRES				
Log 1	Gynecologica I Examination	Normal/Abnormal				
Log 2	Dental	Normal/Abnormal				
Log 3	Ears, Nose, Throat	Normal/Abnormal				

Use a denormalized structure (non-Log)

Use directly the value of SDTM XXTESTCD as FieldOID (i.e.: VSG01 Form)

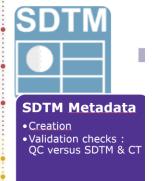
	_
SYSBP	120
SYSBPU	mmHg
DIABP	80
DIABPU	mmHg

CRF Metadata

- Creation
- Validation checks : QC versus CDASH/SDTM & CT

.Detailed steps in our new process – SDTM Metadata

Creation of SDTM Metadata


CRF is annotated with SDTM and then SDTM Metadata file is created based on CRF Metadata. A file with data examples is also prepared.

de 🔻 D	ataset	Name ▼	Label	Type ▼	Length *	Digits 🔻	Format *	Core	Codelist	Decoded Variable	VLM -	Origin	Method	Comment
1 IE		STUDYID	Study Identifier	text	200			Required				Protocol		Identifier
2 IE		DOMAIN	Domain Abbreviation	text	2			Required	CL_C66734_DOMAIN			Assigned		Identifier
3 IE		USUBJID	Unique Subject Identifier	text	200			Expected				Derived	USUBJID	Identifier
4 IE		IESEQ	Sequence Number	float				Required				Derived	SEQ	Identifier
5 IE		IETESTCD	Inclusion/Exclusion Criterion Short Name	text	8			Required		IETEST		CRF		Topic
6 IE		IETEST	Inclusion/Exclusion Criterion	text	200			Required				Assigned		Synonym Qualifier
7 IE		IECAT	Inclusion/Exclusion Category	text	200			Required	CL_C66797_IECAT			CRF		Grouping Qualifier
8 IE		IEORRES	I/E Criterion Original Result	text	2			Required	CL_C66742_NY			Assigned		Result Qualifier
9 IE		IESTRESC	I/E Criterion Result in Std Format	text	2			Required	CL_C66742_NY		Υ	Assigned		Result Qualifier
10 IE		VISITNUM	Visit Number	float				Permissible		VISIT		Assigned		Timing
11 IE		VISIT	Visit Name	text	200			Permissible				Assigned		Timing
12 IE		VISITDY	Planned Study Day of Visit	integer				Permissible				Protocol		Timing
13 IE		EPOCH	Epoch	text	200			Permissible	CL_C99079_EPOCH			Derived	EPOCH	Timing

□ QC of SDTM Metadata

Each SDTM Metadata file is then QCed versus SDTM and CT thanks to programmed QC checks, similarly as for the previous check on CRF Metadata. What is present in Raw CRF Metadata needs to be present in SDTM Metadata: to facilitate mapping and annotation.

Outputs of metadata validation checks are reviewed and metadata are updated accordingly, if applicable.

