

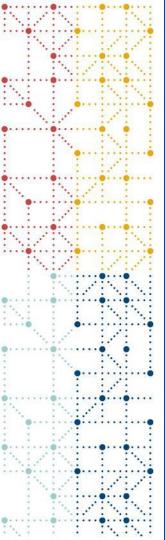
Setup of ADAE and ADTTE for Exposure-Adjusted Incidence Rate Reporting in an Integrated Summary of Safety (ISS) Submission

Mitchikou Tseng, Senior Statistical Programmer, OCS Life Sciences

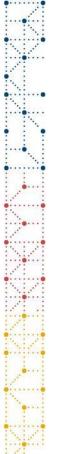
Meet the Speaker

Mitchikou Tseng Title: Senior Statistical Programmer Organization: OCS Life Sciences

Mitch is a Senior Statistical Programmer from OCS Life Sciences and has been working as a SAS programmer in the pharmaceutical research industry for more than 8 years. Her initial five years of experience were primarily in Phase 2 and 3 studies, while in recent years, she has expanded her experience to early development stage/Phase 1, pharmacokinetic analyses, nutrition research and integration studies.


Disclaimer and Disclosures

• The views and opinions expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy or position of CDISC.



Agenda

- 1. Time to Event
- 2. Exposure-Adjusted Incidence Rate (EAIR)
- 3. Implementation in ADAE and ADTTE
- 4. Challenges and Solutions
- 5. Conclusion

Time to Event

Time to Event

• Length of time elapsing before an event is experienced

Two components

- a length of time during which no event was observed
- an indicator of whether the end of that period corresponds to an event or just the end of observation

Clinical application

- Starting time time of diagnosis or time of treatment randomization
- Events of interest achieving complete remission, recurrence of a disease, death or discharge from hospital
- Censored participants does not end in an event

Time to Event Analysis Dataset

CDISC ADaM Basic Data Structure for Time-to-Event Analysis Version 1.0

The ADaM Basic Data Structure for Time-to-Event Analyses

Prepared by the

CDISC Analysis Data Model (ADaM) Team

ADaM BDS

- ADTTE
- Examples
 - Time to Death
 - Progression Free Survival
 - Time to Hepatitis B e Antigen Seroconversion

ADTTE Important Variables

Variable Name	Variable Label	Notes
PARAM	Parameter	The description of the analysis parameter.
AVAL	Analysis Value	AVAL is the elapsed time to the event of interest from the origin. For example, if AVAL is measured in days, AVAL would be ADT – STARTDT or ADT – STARTDT + 1.
STARTDT	Time to Event Origin Date for Subject	The original date of risk for the time-to-event analysis.
ADT	Analysis Date	Analysis date of event or censoring associated with AVAL in numeric format.
CNSR	Censor	CNSR = 0 for event and CNSR > 0 for censored records.
EVNTDESC	Event or Censoring Description	Describe the event of interest or an event that warrants censoring.

Exposure-Adjusted Incidence Rate (EAIR) Integrated Summary of Safety

2024 Europe CDISC+TMF Interchange | #ClearDataClearImpact

10

Exposure-Adjusted Incidence Rate (EAIR)

Safety profiles of investigational drugs

- Safety event incidences
- Crude percentages = $\frac{n}{N}$
 - Individuals are treated and followed up for the same period of time

Integrated Summary of Safety

- Different drug exposure times or follow up times
- EAIR = Adjusts for potential differences on duration of drug exposure
- Incidence Density

Journal of Biometrics & Biostatistics

He et al., J Biom Biostat 2015, 6:3 DOI: 10.4172/2155-6180.1000238

Open Access

Research Article

A Simple Method for Estimating Confidence Intervals for Exposure Adjusted Incidence Rate and Its Applications to Clinical Trials

Xin He¹⁺, Li Chen², Lei Lei², H. Amy Xia² and Mei-Ling Ting Lee¹ ¹University of Maryland, College Park, MD, USA ²Amgen Inc, Thousand Oaks, CA, USA

Abstract

Assessment of drug safety typically involves estimation of occurrence rate of adverse events. Most often, the crude percentage (subject incidence) is used to estimate adverse event rate. However, in some situations, the exposure adjusted incidence rate (EAIR) may be a more appropriate measure to account for the potential difference in the duration of drug exposure or the follow-up time among individuals. In this article, we establish the asymptotic properties of the EAIR under certain assumptions, and propose a general and simple approach for variance estimation and for calculating the confidence interval of the rate. Simulation studies are conducted to evaluate the performance of the proposed approach. The results show that the proposed procedures perform well for various scenarios of different follow-up patterns. Data from a clinical trial are used to demonstrate the application of the method. A SAS macro is provided in the appendix.

Exposure-Adjusted Incidence Rate (EAIR)

- A measure of average events per unit time of exposure or followup
- $\frac{\text{number of subjects exposed to the drug and experiencing a certain event}}{\text{total exposure time of all subjects who are at risk for the event}} = \frac{n}{\text{Exp.yrs}}$
 - for subjects with no event, the exposure time is the time from the first drug intake to a decided reference end date;
 - for subjects with at least one event, the exposure time is the time from the first drug intake to first event.

EAIR in an Overview Adverse Event table

Table 1: Overview of treatment-emergent adverse events (TEAEs): number of patients and events

	Treatme (N=X)		Placek (N=XXX	EAIR diff. est.	
·	n (%) [m]	Exp. yrs. EAIR	n (%) [m]	Exp. yrs. EAIR	EAIR diff. (95% CI)
TEAES $EAIR = \frac{n}{Exp.yrs}$	(xx.x) [xx]	XX XX.X	xx (xx.x) [xx]	xx xx.x	x.xx (x.xx;x.xx)
TEAEs by severity					
Mild	xx (xx.x)	xx	xx (xx.x)	xx	x.xx
	[xx]	XX.X	[xx]	xx.x	(x.xx;x.xx)
Moderate	XX (XX.X)	XX	XX (XX.X)	XX	x.xx
	[XX]	XX.X	[XX]	xx.x	(x.xx;x.xx)
Severe	xx (xx.x) [xx]	XX XX.X	XX (XX.X) [XX]	xx xx.x	x.xx (x.xx;x.xx)
					(,,
TEAEs related to study treatment	xx (xx.x)	XX	XX (XX.X)	XX	x.xx
2	[xx]	xx.x	[xx]	xx.x	(x.xx;x.xx)
	xx (xx.x)	xx	xx (xx.x)	xx	x.xx
TE AESIS	[xx]	xx.x	[xx]	xx.x	(x.xx;x.xx)
Serious TEAEs	xx (xx.x)	XX	XX (XX.X)	xx	X.XX
	[xx]	XX.X	[xx]	xx.x	(x.xx;x.xx)
	xx (xx.x)	xx	xx (xx.x)	xx	x.xx
Serious TEAEs related to study treatment	[xx]	xx.x	[xx]	xx.x	(x.xx;x.xx)
	xx (xx.x)	xx	xx (xx.x)	xx	x.xx
TEAEs leading to study treatment discontinuation	[XX]	xx.x	[xx]	xx.x	(x.xx;x.xx)

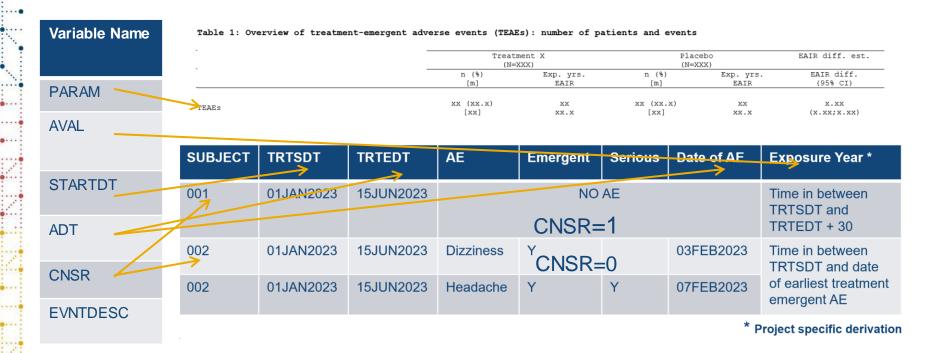
EAIR in an Overview Adverse Event table

Table 1: Overview of treatment-emergent adverse events (TEAEs): number of patients and events

			Treat (N=)	nent X XXX)		Placebo (N=XXX)	EAIR diff. est.
			n (%) [m]	Exp. yrs. EAIR	n (%) [m]	Exp. yrs EAIR	. EAIR diff. (95% CI)
TEAES	EAI	$R = \frac{n}{Exp.yrs}$	(xx)(xx.x) [xx]	XX XX.X	xx (xx. [xx]	x) xx xx.x	x.xx (x.xx;x.xx)
SUBJECT	TRTSDT	TRTEDT	AE	Emergent	Serious	Date of AE	Exposure Year *
001	01JAN2023	15JUN2023		NO	AE		Time in between TRTSDT and TRTEDT + 30
002 🗸	01JAN2023	15JUN2023	Dizziness	Υ		03FEB2023	Time in between TRTSDT and date
002 🗶	01JAN2023	15JUN2023	Headache	Y	Y	07FEB2023	of earliest treatment emergent AE

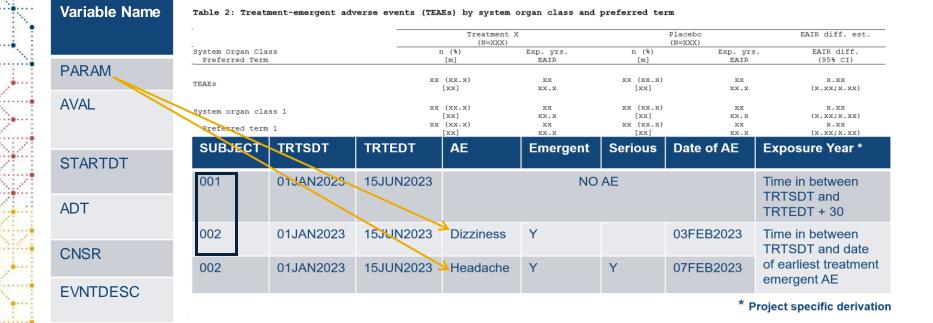
* Project specific derivation

Implementation in ADAE and ADTTE



Implementation in ADAE and ADTTE

- Applicability
- Ensure traceability
- Easy QC process
- Faster creation of subgroup analyses or repeat TLFs



ADTTE Application – AE Overall Table

ADTTE Application – AE SOC and PT Table

ADTTE Result

SUBJECT	PARAM	PARAMCD	AVAL	STARTDT	ADT	CNSR	EVENTDSC
001	TEAEs	TEAE	0.536619	01JAN2023	15JUN2023	1	NO TEAEs
001	Dizziness	DIZZ	0.536619	01JAN2023	15JUN2023	1	NO Dizziness
001	Headache	HEAD	0.536619	01JAN2023	15JUN2023	1	NO Headache
002	TEAEs	TEAE	0.093087	01JAN2023	03FEB2023	0	TEAEs
002	Dizziness	DIZZ	0.093087	01JAN2023	03FEB2023	0	Dizziness
002	Headache	HEAD	0.104038	01JAN2023	07FEB2023	0	Headache

ADAE - Flag Variables

Table 1: Overview of treatment-emergent adverse events (TEAEs): number of patients and events

		ment X XXX)	Plac (N=X	EAIR diff. est.	
_	n (%) [m]	Exp. yrs. EAIR	n (%) [m]	Exp. yrs. EAIR	EAIR diff. (95% CI)
TEAEs	xx (xx.x) [xx]	xx xx.x	xx (xx.x) [xx]	xx xx.x	x.xx (x.xx;x.xx)
	[22]		[**]	****	(,
TEAEs by severity			<i>.</i>		
Mild	xx (xx.x)	xx	xx (xx.x)	xx	x.xx
	[xx]	XX.X	[xx]	XX.X	(x.xx;x.xx)
Moderate	xx (xx.x)	xx	xx (xx.x)	XX	x.xx
	[xx]	xx.x	[xx]	XX.X	(x.xx;x.xx)
Severe	xx (xx.x)	xx	XX (XX.X)	XX	x.xx
	[xx]	xx.x	[xx]	XX.X	(x.xx;x.xx)
EAEs related to study treatment	xx (xx.x)	xx	xx (xx.x)	XX	x.xx
LADS TETATED TO Study creatment	[xx]	xx.x	[xx]	xx.x	(x.xx;x.xx)
'E AESIS	xx (xx.x)	xx	xx (xx.x)	xx	x.xx
E ALSIS	[xx]	xx.x	[xx]	xx.x	(x.xx;x.xx)
	xx (xx.x)	xx	xx (xx.x)	xx	x.xx
Serious TEAEs	[xx]	XX.X	[xx]	XX.X	(x.xx;x.xx)
	xx (xx.x)	xx	xx (xx.x)	xx	x.xx
Serious TEAEs related to study treatment	[xx]	XX.X	[xx]	XX.X	(x.xx;x.xx)
	xx (xx.x)	xx	xx (xx.x)	xx	x.xx
EAEs leading to study treatment discontinuation	[xx]	xx.x	[xx]	xx.x	(x.xx;x.xx)

AOCCzzFL	1st Occurrence of	Char	Y	Perm	Perm	Additional flag variables as needed for analysis. Derivation rules for these flags need
						to be described in the metadata.

Challenges and Solutions

ISS ADAE Specific Challenges

No ISS SAP

Defining the integrated Treatment Emergent AE derivation

- Accounting incomplete dates in the derivation
- Accounting run-in or washout period

Defining the unique AE

- Upgrade MedDRA coding
- Differences against previous CSR results

ISS ADAE Lessons Learned

- Creation of an ISS SAP
- Align expectations on the previous CSR results investigations of differences
- Request a copy of the CSR, programs, mapping specifications and datasets of studies being integrated
- Prepare investigative skills and lots of patience

Big Data

Lots of flags in ADAE to identify the first occurrence of an AE category

Millions of records in ADTTE

- Huge number of parameters per subject
 - AE Overall Categories •
 - First TEAE ٠
 - **First Serious** ٠
 - First Mild ٠
 - etc ٠
 - AE System Organ Class and Preferred Term •
 - First Nervous system disorders ٠
 - **First Dizziness** •
 - etc
- Huge number of subjects because of integrated studies

Big Data = Performance Issues

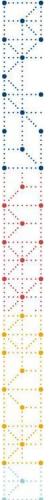
• Memory

• Processing time

Loops and Macros

Input/Output time

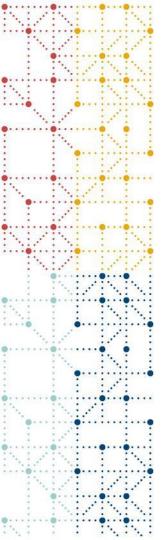
- ADaM finalization macro takes longer time
- Double programming's PROC COMPARE takes longer


Solution = Efficient Programming

Identifying which process consumes huge time

	10011	501	,	
	3978	NOTE	1 2	set WORK.ADAM_TTE_FINALIZE decreased size by 90.97 percent.
	3979		Compressed is 15	165 pages; un-compressed would require 168027 pages.
	3980	NOTE		TTE FINALIZE created, with 6889091 rows and 18 columns.
	3981		—	
	3982	555	quit;	
	3983	NOTE	: PROCEDURE SQL us	ed (Total process time):
	3984		real time	7:21.40
	3985		cpu time	1:30.56
	3986			
	3987			
results - (303 hits)				
Line 3796	:	real time	0.03 seconds	
Line 3830		real time	e 0.00 seconds	
Line 3843		real time		
Line 3921		real time		
Line 3939		real time		
Line 3958	:	real time		
Line 3984		real time		
Line 4111	:	real time		
Line 4156	:	real time	19.16 seconds	

res



Solution = Efficient Programming

- Identifying which process consumes huge time
- Only including variables that are necessary
- Only including records that are necessary
 - Do not create records for System Organ Classes/Preferred Terms that were not identified as Treatment Emergent for at least one subject
- PROC IML with UNIQUEBY function was mainly used in computing the EAIR, the EAIR difference estimate and its confidence intervals

Subset PROC COMPARE

Conclusion

Conclusion

- ISS ADAE can be challenging
- EAIR analysis can be supported by ADTTE
- Exposure years of a subject in a certain AE or AE category is stored
- Performance issues can be encountered but can be solved by efficient programming
- Explore alternative options

Resources

- ADaM Structure for Occurrence Data (OCCDS) Implementation Guide, Version 1.1 (Final), February 16, 2016
- Chen H.L, and Wang H. (2012) Multiple Applications of ADaM Time-to-Event Datasets, PharmaSUG 2012, DS19.
- He X et al. (2015) A Simple Method for Estimating Confidence Intervals for Exposure Adjusted Incidence Rate and Its Applications to Clinical Trials, Journal of Biometrics and Biostatistics 2015, 6:3.
- The ADaM Basic Data Structure for Time-to-Event Analyses, Version 1.0, January 5, 2011

Thank You!

For further questions: Contact me at <u>mitchikou-tseng@ocs-consulting.com</u> or Visit the OCS Life Sciences booth

You can have a second look at the presentation:

