cdisic

Digital Health Technologies (DHTs): A Path to Data Standardization
Presented by Christine Connolly, Head of Standards Projects, CDISC

Meet the Speaker

Christine Connolly

Title: Head of Standards Projects

Organization: CDISC

Christine Connolly is an advocate for standardization given its potential to expedite improved health outcomes. She has led initiatives, developed, and implemented data standards for almost fifteen years and has twentyfive years of experience working in global clinical trials in both academic and pharmaceutical settings.

Agenda

1. Digital Health Technologies (DHTs)
2. Standards Through Partnership
3. A Path to Standardization

Digital Health Technologies (DHTs)

Digital Medicine

Digital Medicine Field

The use of technologies as tools for measurement and intervention in the service of human health ${ }^{1}$

Digital Health Technologies (DHTs)

A system that uses computing platforms, connectivity, software, and/or sensors, for healthcare and related uses ${ }^{2}$

Sensor-based DHTs

Digital health technologies that include sensor hardware
Software applications that run on general-purpose computing platforms
${ }^{1}$ https://dimesociety.org/about-us/defining-digital-medicine/
$2 \underline{h t t p s: / / / w w . f d a . g o v / r e g u l a t o r y-i n f o r m a t i o n / s e a r c h-f d a-q u i d a n c e-d o c u m e n t s / d i g i t ~ a l-h e a l t h-t e c h n o l o g i e s-r e m o t e-d a t a-a c q u i s i t i o n-c l i n i c a l-i n v e s t i g a t i o n s ~}$

Advantages of DHTs Clinical Research

Data may better reflect the lived (real world) experience
Understanding of day-to-day variability
Improved recruitment, participant engagement, and retention
Decentralized trials with wider patient access
Continuous or frequent measurements increase statistical power
May reduce burden on participants, sites, and investigators
Reproducible, objective data to complement patient-reported outcomes

Today

Contexts in which DHTs support clinical research are innovative and evolving.

Although separate components exist, at present there are no connected, end-toend community resources, from evaluation of DHTs for data collection through subsequent representations of data.

A volunteer team of diverse stakeholders is working to address opportunities for end-to-end resources and data standardization.

Standards Through Partnership

Standards Through Partnership

To advance the ethical, effective, equitable, and safe use of digital medicine to redefine healthcare and improve lives

를 DATAcc

Digital Health Measurement Collaborative Community

$$
\text { by } D \frac{1}{\operatorname{in}} \sqrt{2}
$$

A collaborative community hosted by DiMe with the FDA's Center for Devices and Radiological Health

cdisic

Create connected standards across the study information lifecycle to enable accessible, interoperable, and reusable data for more meaningful and effective research

Partnership Goals

A framework for long-term, ongoing provision of connected, end-to-end community resources to support DHT data collection in clinical research via organizational partnership and volunteer engagement.

End-to-end Resource Alignment

Library of Digital Endpoints

https://dimesociety.org/get-involved/library-of-digital-endpoints/

Endpoint identifier	Trial identifier	Endpoint positioning
87	NCT00325728	Primary
99	NCT01474772	Secondary

Endpoint description (per trial
registration record)
Mean Nighttime Total Sleep Time as
determined by actigraphy., Week 1
Over the Last 7 Days of Each Treatment
Period (Week 6 of Each Treatment

Health concept/s	Technology type	Trial phase	Trial primary purpose		
	Sleep	Wearable	Phase 2	Treatment	Treatment
:---					

Condition/s Chronic Insomnia Peripheral Neuropathy

Condition/s category

Sleep/wake
Endocrine or metabolic conditions,Neurological

Glossary

https://dimesociety.org/glossary/

```
Sensor-based digital
health technologies
(sDHT)
/'sensər-beist 'didjətəl hel tek 'naləḑiz/
Connected digital medicine products that process data captured by mobile sensors using algorithms to generate measures of behavioral and/or physiological function, also referred to as biometric monitoring technologies.
V3+ Framework
```


Additional resources may also be considered.

V3+ Framework

https://datacc.dimesociety.org/V3/

A Path to Standardization

Digital Health Technologies Initiative

\checkmark Define initial set of usable Digital Health Technology endpoints and concepts

\checkmark Define an exchange mechanism to represent lineage, traceability, and quality of the data for real world data
\checkmark Continuously deliver proof of concepts demonstrating integration use cases

Digital Health Technologies Initiative

$2024 \quad 2025$ 2026

Initial Scope and Deliverables

Device Attributes \& Digital Endpoints

DiMe Library of Digital Endpoints: 125 CGM

Example 1: Continous Glucose Monitoring

This example shows findings from assessments of estimates of blood glucose from a continuous glucose monitor (CGM) with the purpose of supporting DiMe Endpoint 125, "CGM \% Time $70-180 \mathrm{mg} / \mathrm{dl}, "$ in a clinical trial. The device data needed for the trial is specified in the study protocol.

The following dataset is an example of data output by the CGM. The data in the columns "Insulin Value (u)" and "Carb Value (grams)" are for data input by the user; they are not used in this example.
> dexcom g7.xpt
Relevant glucose data from the device output file have been mapped to the following LB domain dataset.
> lb.xpt

Best Practices

Key Concepts

DiMe Library of Digital Endpoints

Endpoint identifier	Trial identifier	Endpoint positioning	\checkmark	Endpoint description (per trial registration record)	Health concept/s	\checkmark	Technology type	Trial phase	Trial primary purpose	Condition/s
125	NCT03668808	Secondary		CGM \% Time 70-180 mg/dl, \% time $70-180 \mathrm{mg} / \mathrm{dl}$ by CGM, In flight period of time and for 72 hours at each	Blood/skin/other biomarkers		Wearable	Phase 4	Treatment	Diabetes Mellitus Type 1

Draft Concept Map

cdisic

Device Attributes

Draft Example 1: Continuous Glucose Monitoring

This example shows findings from assessments of estimates of blood glucose from a continuous glucose monitor (CGM) with the purpose of supporting DiMe Endpoint 125, "CGM \% Time $70-180 \mathrm{mg} / \mathrm{dl}$," in a clinical trial. The device data needed for the trial is specified in the study protocol.
di.xpt

Row	STUDYID	DOMAIN	SPDEVID	DISEQ	DIPARMCD	DIPARM	DIVAL
$\mathbf{1}$	ABC	DI	ANDROID G7	1	DEVTYPE	Device Type	Mobile phone
$\mathbf{2}$	ABC	DI	ANDROID G7	1	MANUF	Manufacturer	Samsung
$\mathbf{3}$	ABC	DI	ANDROID G7	1	VERSION	Version Identifier	7
$\mathbf{4}$	ABC	DI	Dexcom G7 Mobile App	1	DEVTYPE	Device Type	Mobile phone app
$\mathbf{5}$	ABC	DI	Dexcom G7 Mobile App	1	MANUF	Manufacturer	Dexcom
$\mathbf{6}$	ABC	DI	Dexcom G7 Mobile App	1	VERSION	Version Identifier	7
$\mathbf{7}$	ABC	DI	DEXCOM G7 3732xxxxxxxx	1	DEVTYPE	Device Type	Sensor/Transmitter
$\mathbf{8}$	ABC	DI	DEXCOM G7 3732xxxxxxxx	1	MANUF	Manufacturer	Dexcom
$\mathbf{9}$	ABC	DI	DEXCOM G7 3732xxxxxxxx	1	SERIAL	Serial Number	$3732 x x x x x x x x$
$\mathbf{1 0}$	ABC	DI	DEXCOM G7 CGM 3732xxxxxxxx	1	DEVTYPE	Device Type	CGM
$\mathbf{1 1}$	ABC	DI	DEXCOM G7 CGM 3732xxxxxxxx	1	MANUF	Manufacturer	Dexcom

Digital Endpoints

Draft Example 1: Continuous Glucose Monitoring

This example shows findings from assessments of estimates of blood glucose from a continuous glucose monitor (CGM) with the purpose of supporting DiMe Endpoint 125, "CGM \% Time 70-180 mg/dl," in a clinical trial. The device data needed for the trial is specified in the study protocol.

Row	STUDYID	USUBJID	SPDEVID	LBSEQ	LBREFID	LBTESTCD	LBTEST	LBORRES	LBORRESU	LBSPEC	LBMETHOD	LBANMETH	LBDTC
1	ABC	ABC-001	$\begin{gathered} \text { DEXCOM G7 } \\ \text { CGM } \\ 3732 x x x x x x x x \end{gathered}$	1	$\begin{array}{\|c} 3732 x x x x x x x x- \\ 1684 \end{array}$	EGV	Estimated Glucose Value	82	$\mathrm{mg} / \mathrm{dL}$	INTERSTITIAL FLUID	BIOSENSOR	ALGORITHM	$\begin{aligned} & \text { 2023-06- } \\ & \text { 15T08:00:56 } \end{aligned}$
2	ABC	ABC-001	$\begin{gathered} \text { DEXCOM G7 } \\ \text { CGM } \\ 3732 x x x x x x x x \end{gathered}$	2	$\begin{array}{\|c} 3732 x x x x x x x x- \\ 1984 \end{array}$	EGV	Estimated Glucose Value	89	$\mathrm{mg} / \mathrm{dL}$	INTERSTITIAL FLUID	BIOSENSOR	ALGORITHM	$\begin{aligned} & \text { 2023-06- } \\ & \text { 15T08:05:56 } \end{aligned}$
3	ABC	ABC-001	$\begin{gathered} \text { DEXCOM G7 } \\ \text { CGM } \\ 3732 x x x x x x x x \end{gathered}$	3	$\begin{array}{\|c} 3732 x x x x x x x x- \\ 1684 \end{array}$	EGV	Estimated Glucose Value	94	$\mathrm{mg} / \mathrm{dL}$	INTERSTITIAL FLUID	BIOSENSOR	ALGORITHM	$\begin{aligned} & \text { 2023-06- } \\ & \text { 15T08:10:57 } \end{aligned}$

Framework

Plan
 Pilot
 Publish

A Path to Community Benefit

Resource development helps to address current community needs and supports adoption of DHTs.

Piloting supports real-time content release and is comparable to an extended Public Review where content is used with real-time feedback

A steady-state framework empowers the community to develop content in real-time per innovation and evolving needs.

Please join us!

Become a volunteer
 www.cdisc.org/volunteer
 https://dimesociety.org/get-involved/

Thank You!

cdisic

