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Introduction

What is the state of clinical trial outcome data, and how can AI 
improve its usefulness?



Outcome data is critical but inaccessible

• Clinical trial data is a critical resource for improving research and trial 

design.

• Much of this data is locked in free-text formats, making it difficult to 

leverage.



Searching for outcomes is a highly manual process

• Searching for outcomes means 

looking at long lists from 

individual trials

• Making sense of free text is time 
consuming

clinicaltrials.gov search interface



Searching for outcomes is a highly manual process

Find trials
via CT gov 
interface

Comb 
through 

each trial/ 

outcomes

Manually 
interpret 
results

Compare 
with tabular 

data

Decide if 
relevant



AI unlocks outcome data potential

• AI solution: Use LLMs to convert free-text outcomes into structured, 

queryable information.

• Application: Map outcomes to standardized definitions (BCs), enabling 

searchability.



AI streamlines the entire process

Search for outcomes 

based on BC

List of summarized 

outcomes is returned



Easy-access data enables better trials

• Benefits: accelerates both research and trial design by automating the 

search and screen process.

• Ultimate Goal: take AI assisted trial design even further - generate more 

intelligent summaries, recommendations, and protocols themselves



AI can help build CDISC biomedical concept library

• Attempting to map entities that LLMs identify to Biological Concepts in 

the CDISC API helps identify potentially missing BCs.



Data Preparation

Preprocessing and joining multiple data sources



AACT Database
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Data Filtering:

- By disease area or multiple conditions (i.e. alzheimer’s disease)
- Study start year (i.e. all studies started after 2020)



CDISC’s Biomedical Concepts

• Based on existing ontologies like 

NCIt

• CDISC API allows us to access 

and extract biomedical concepts 
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{

"conceptId": "C60832",

"shortName": "Oxygen Saturation 

Measurement",

"definition": "The measurement of the 

ratio of oxygenated hemoglobin to total 

hemoglobin in the blood.",

"href": 

"https://ncithesaurus.nci.nih.gov/ncitbrowser/Co

nceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit

&code=C60832",

"categories": [

"Vital Signs",

"Oxygen Saturation Measurements",

"Oximetry Tests",

], …}



Our Approach

LLM powered entity-BC mapping and outcome summarising



Approach
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Demo

An interface for exploring trial outcomes





Implementation Details

Using LLMs for extraction, mapping and summarising tasks



LLMs outperforms NER models for entity extraction

Trial Outcome: “Change From Baseline in Hematology Parameter: 

Erythrocyte. Mean Corpuscular Hemoglobin (Ery. MCH)”
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NER Model Output LLM Output

'entities': [

(Ery, 92, 95, 'DRUG'), 

(MCV, 97, 100, 'DRUG')

]}

"entities": [

"Change From Baseline",

"Hematology Parameter",

"Erythrocyte",

"Mean Corpuscular Hemoglobin",

"Ery. MCH",

],



LLM powered Entity - Biomedical Concept mapping
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{       "outcome": "Part 2: Change From Baseline in 

Chemistry Parameters: … Cholesterol, Creatinine, Direct 

Bilirubin, Glucose, HDL Cholesterol, …",

"entities": [

...

"Cholesterol",

"Creatinine",

"Direct Bilirubin",

"Glucose",

"HDL Cholesterol",

...

],

},

{  "conceptId": "TBD",

"shortName": "Direct Bilirubin",

"definition": "The portion of 

bilirubin that is directly processed by 

the liver ...",

"href": "",

"categories": ["Laboratory Test 

Result", "Liver Function Test"],

"_links": {},

"synonyms": ["Conjugated Bilirubin"],

"resultScales": ["Quantitative"],

"coding": [],

... },



Using LLMs Tabular Data Summary

• For each trial outcome that is returned by the user’s biomedical concept 

search, a summary of outcome measurements is added.

• LLMs are getting better at summarising/analysing tabular data and this was 

an attempt to showcase how they can automate data analysis. 
• this is of course far from statistical analysis, and just for summary purposes .

• A step further could be to automate graph generation instead of text 

summaries, but this would be computationally expensive in its current form.
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Takeaways and Limitations



Defining missing BCs for CDISC library

• In its current state, the BCs are very limited, and therefore don’t cover a 

significant portion of trial outcomes.

• This approach could be developed into defining BCs that are missing 

from the CDISC library.

• Trial outcome entity - BC mappings unlock a potential to structure any 

kind of free-text data (i.e. eligibility criteria).

252024 Europe CDISC+TMF Interchange | #ClearDataClearImpact



Limitations

• LLM output formats are not 100% reliable, which requires extra checks

• Agents with additional steps could prepare output in an expected way

• Currently using public data - more work required to use private data
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The Future

What are the next steps to fully unlock trial outcomes?



Future improvements are inevitable 

• As LLMs and specialized models improve, we can rely on them for 

deeper understanding of trial outcomes, and, likely, to assist the actual 

design of new trials.

• As standardized library of BCs grows, more can be identified in outcomes



Thank You!



Demo

302024 Europe CDISC+TMF Interchange | #ClearDataClearImpact



Demo
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Demo
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Demo
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Demo
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Appendix 1: Abstract

Shortened Abstract

Clinical trial data is a valuable resource for improving trial design and accelerating research. However, much data remains 

locked in free-text formats across sources like clinicaltrials.gov, which has outcome data for over 60,000 completed studies. 

Large language models present an opportunity to unlock this data and transform it into structured, queryable information. This 

presentation describes an approach that uses AI to map outcome data containing numerical, categorical and free-text columns 

to standardized endpoint definitions like CDISC Biomedical Concepts. This creates a structured dataset, connects historical 

data to emerging standards and models, and enables new use cases. Researchers can search outcomes by domain or metric 

to find precedents to inform trial design. Data can be aggregated for meta-research and benchmarking, and predictive modeling 

on this harmonized data could optimize future trials. By transforming free-text outcomes into structured endpoints mapped to 

standards, AI can bring legacy clinical trial data back to life and accelerate research through data-driven trial design.

http://clinicaltrials.gov/
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