
R for Submission

and CDISC Open-Source Alliance

Michael Stackhouse | Chief Innovation Officer

$\langle \leftrightarrow \rightarrow O \rangle$	٩) :
4 GPT-3.5	+ * GPT-4 🔒
Chat	GPT
Brainstorm edge cases for a function with birthdate as input, horoscope as ou	Write a thank-you note to a guest speaker for my class
Help me pick a gift for my dad who loves fishing	Plan an itinerary for a literary tour of England, visiting famous authors'
Send a message	

Our Work Is Important High Risk, High Reward *Real Impact*

Hardened Technology

Why Bother Changing?

Current processes are optimized

What's the ROI of new technology?

Why Bother Changing?

Current processes are optimized

What's the ROI of new technology?

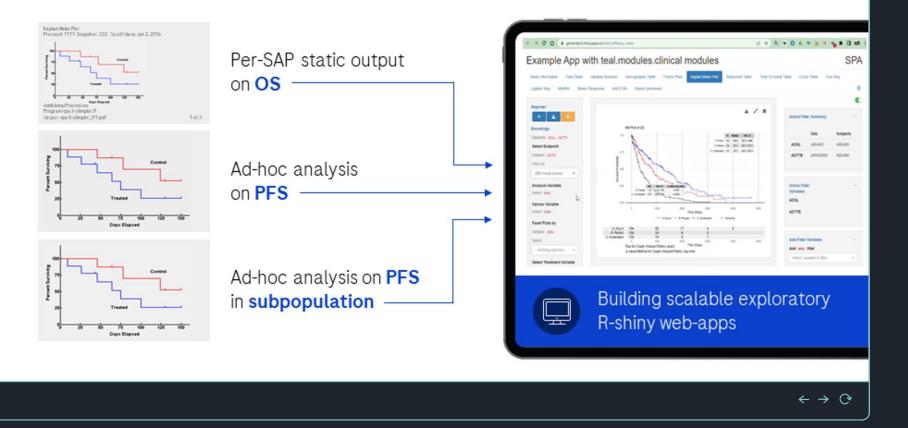
If we can't make what we have any better, *make something different*

Progress and Collaboration

pharmaverse

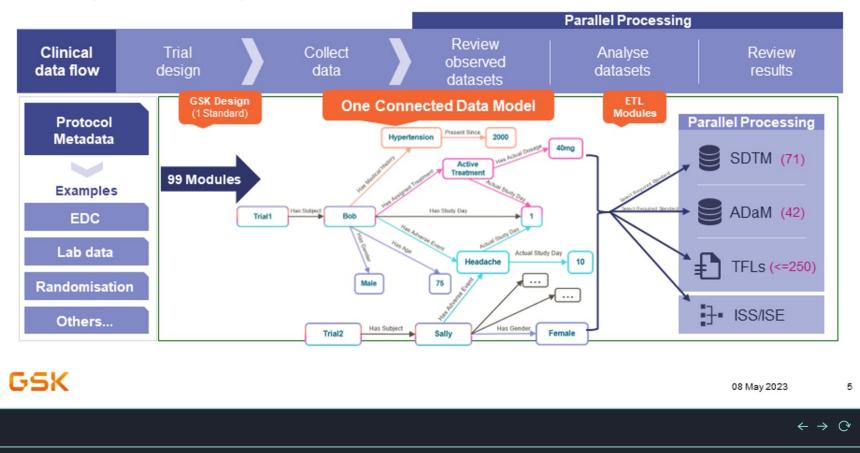
pharmaverse: *Breaking boundaries through open source collaboration*

R/Pharma 2022



Improve efficiency in the way we work

Analyzing clinical trial data requires multiple ways of presenting and interacting with our data



Roche

GSK Clinical Reporting Knowledge Graphs

Our Idea

...the Google Translate for our clinical data – helping us translate our complex data landscape to answer important scientific questions

CAMIS

CAMIS

Home About Contributions Meeting Minutes Conferences

CAMIS

On this page Introduction Motivation

Introduction

Several discrepancies have been discovered in statistical analysis results between different programming languages, even in fully qualified statistical computing environments. Subtle differences exist between the fundamental approaches implemented by each language, yielding differences in results which are each correct in their own right. The fact that these differences exist causes unease on the behalf of sponsor companies when submitting to a regulatory agency, as it is uncertain if the agency will view these differences as problematic. In its Statistical Software Clarifying Statement, the US Food and Drug Administration (FDA) states that it "FDA does not require use of any specific software for statistical analyses" and that "the computer software used for data management and statistical analysis should be reliable." Observing differences across languages can reduce the analyst's confidence in reliability and, by understanding the source of any discrepancies, one can reinstate confidence in reliability.

CDISC - CORE

Why is CDISC doing CORE?

- Ensure each standard has a set of unambiguous, executable Conformance Rules
- Ensure consistency across Conformance Rule implementations
- Expedite the availability of executable Conformance Rules for new Foundational Standards
- Create executable Conformance Rules vetted by the CDISC standards development teams
- Develop an open-source engine that serves as a Reference Implementation
- Publish the Rules in the CDISC Library and the engine under the CDISC Open Source Alliance (COSA)

CORE Initiative = Rules + Engine

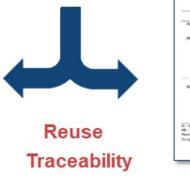
https://www.cdisc.org/core

CDISC - ARS

.

Shifting the Paradigm

Row	STUDYID	USUBJID	MIDS	CEDECOD	WASAEYN	ASTDTM
1	XYZ	000001	HYPO 1	Hypoglycemia	Y	07Sep2012 22:29:00
2	XYZ	000001	HYPO 2	Hypoglycemia	N	10Sep2012 09:12:00
3	XYZ	000001	НҮРО З	Hypoglycemia	N	10Sep2012 23:05:00
4	XYZ	000001	HYPO 4	Hypoglycemia	N	11Sep2012 15:24:00
5	XYZ	000001	HYPO 5	Hypoglycemia	N	18Sep2012 11:39:00
6	XYZ	000002	HYPO 1	Hypoglycemia	N	22Oct2012 13:28:00
7	XYZ	000002	HYPO 2	Hypoglycemia	N	25Oct2012 13:59:00
8	XYZ	000002	HYPO 3	Hypoglycemia	N	17Nov2012 05:01:00


ADaM Dataset

	41.7404	dis.pspulation	dim.bradinant	des.parameter		din aprox	des ataliaties	analysisflasut
108	n dra. summary	errolled	Teatrett.A	parant subjects	um.RLL	ageout ALL	stat here	100
106	2 de summary	anded	Treatment A	paran subjects	sec.F	append ALL	stat here	40
108	D dra.manmany	anded	Testinett.A	parant automite	am.7	agenced ALL	stat parcent	40
108	il dra. summery	ampled	Treatment A	paran subjects	tame Mr	approx ALL	stat here	40
100	6 dm.aurimary	amilad	Treatment.A	parant autorite	man, Mr	agenial ALL	and partiant	40
100	E-dm. summary	anded	Teatrant 8	parant autoects	une PLL	ADMIN ALL	and here	50
108	7 dm. summary	anded	Trutners 8	parant subjects	um.F	approx.ALL	stat.htmp	30
100	E do. summary	anded	Teathert.5	parant autorita	am.7	agenced. ALL	stat part and	40
100	8 drs. summary	anded	Treatment 8	parant subjects	same Mr.	Approx ALL	stat hes	20
107	0 dm.aurimary	anded	Tradition 5	parant automite	man, Mr	equilat ALL	stal parcent	40
104	1 do auronary	anded	Treatment, NJ.	paran subjects	1000.PEJ.	approx.ALL	atat here	190
NDR	2 dm. summary	awaled	Treatment ALL	parant autorite	usin.F	agerus ALL	stat.hes	
104	3 dm. auromany	anded	Treatment ALL	parant autorchi	and f	agenat.ALL	and partners	40
NDA.	il de syneary	awded	Treatment ALL	parant subjects	serve Ref.	agenial ALL	stat here	40
	5 do. synmary	anded	Treatment, ALL	parant autorite	many, Ref.	approx.ALL	and partners	40
104	E dos. summary		Treatment A	parieth age	and MLL	append ALL	stat here	100
	7 do summary		Teatriet,A	paran.ape	100M.PE.L	agenat ALL	and mean	42.7
104	8 de agreegy		Treatment A	paran apa	ann PLL	agenal ALL	stat.atthey	14.7
	5 dn ayrimany		Teatnett.A	parant age	www.PEL	agecut ALL	atal nechan	37.0
162	6 dm.auremany		Treatment A	paran ape	1000 Mil.L.	approx.ALL	104.00	21.0
102	1 doi aurimary		Testinett.A.	parant.app	man, PEL	agenial ALL	stat.res	86.0
102	2 dm. summary		Treatment &	paran.apr	menter, PRI, 5,	agenust ALL	stat here	60
102	0 de agregaty		Tradinant 8	parant.mps	man PLL	manual ALL	stat.man	#1.3
102	4 dm. summary		Teatract 8	paran ape	tantos PELL	egerus ALL	stat at the	10.3
102	6 dri sammary		Tradinant 8	pariant age	usin HLL	agental ALL	stat.median	36.0
100	E dos automativ		Teatrant 8	parant age	ana. #1.1.	append ALL	404.000	23.6
102	7 dm. summary		Trainers 8	pariant age	same.HLL	agental ALL	stat.max	67.0
102	E dis synametry		Treatment ALL	parters appr	mm. PLL	equal of ALL	stat free	150
102	6 dm.summary		Treatment ALL	paran apa	sens. HELL	Approx ALL	stal rear	41.0
103	E do. auronary		Treatment ALL	parant.app	usin FLL	minist ALL	stat at her	12.4
	i de auronary		Tradition ALL	parant age	man PLL	append ALL	and mariler	37.0
103	C dn synmary		Treatment ALL	paran apr	same PELL	minist ALL	100.000	21.0
	0 do avoney		Transforment ALL	parant age	mm. Ph. 1.	against ALL	and rear	67.0

Metadata Field	Metadata				
DISPLAY IDENTIFIER	Table 4.2.1/Figure 4.2.1				
DISPLAY NAME	Mean Change from Baseline in HbA1c (Percent) Lo Period, Intention-to-treat Population	ngitudinal Repeated Measures An			
RESULT IDENTIFIER	Treatment difference results (LSMean, confidence interval, p-value)				
PARAM	HbAlc (%)				
PARAMCD	HBA1C				
ANALYSIS VARIABLE	CHG (Change from baseline)				
ANALYSIS REASON	SPECIFIED IN SAP				
ANALYSIS PURPOSE	PRIMARY OUTCOME MEASURE	ARM v1			
ANALYSIS DATASET	ADHBA1C				

ARM Extension Technical Specification

	Halo (4) Enriptedinal Repaired Near 24-Meet Short-term Double-folial Tre Interface-to-treat Provide	Ament Daried	
	Antenant in store righter	Drug A	Drug B
BARLINE	14	115	115
	Nean 1901	M.30KC M.3000	N.NE (N.N900
NELDE 4	14	1001	3000
	Change from baseline: Hean (80)	X.XX (X.XXX)	X.XX X.X00)
	Adjusted change from baseline: Heat (02)	000K.K XK.K	X.XX (X.X00)
	954 Confidence interval for adjusted mean	001.30% 301.30	001.101, 301.10
	bifference wa. brug B (HE)		101.301 (X.30000
	954 Confidence interval for difference		ODL.NR. XH.ND
	2-value vs. Drug B		H. KOOK
WEEK 12		X.3011 X.3000	36.30K (36.3000)
	Change from baseline: Mean (20)	1008	NOOR
	Adjusted change from baseline: Nean (82)	CORC. N. 9 .30C.N	X.XX (X.X00)
	95A Confidence Interval for adjusted mean	CODC. K XX. K	X.XE (X.XEO)
	Difference vs. Drug 8 (68)	(00L30k, 10L30)	(XX.XX, XX.X)
	954 Confidence interval for difference		101.301 (X.30000
	p-value ve. Drug B		001.305, 301.30
	of mid-mote in the Intention to treast (JW) Replation.		H.XD00X

Display

 $\leftrightarrow \rightarrow \circ$

Digital Data Flow

Future Value Streams for Digital Data Flow

Team will begin to address all three at varying degrees (in priority order)

Complete Protocol Digitization & Regulatory Alignment

- Includes collaboration through the Vulcan Working Group between ICH M11 & CDISC
- Complete (100%) digitization of all protocol elements in alignment with M11 and relevant CDISC SDTM domains
- · Begins with gap analysis between USDM and ICH M11 content model, CDISC SDTM, and Global Trial Registry Reporting
- Goal to capture "breadth" of ICH M11 completely within USDM, followed by greater "depth" of structured content within model (e.g. structured I/E criteria)

Expand Downstream Connectivity

- Includes collaboration with expanding community of tech solution providers across range of clinical solutions
- Further develop USDM to enable downstream connectivity with priority systems, enabling a future state of "write once, read many times"
- · Work collaboratively with the vendor ecosystem to better understand existing gaps and development requirements for the USDM

Alignment with Point of Care

Includes collaboration with Vulcan FHIR Accelerator

- · Alignment of DDF and FHIR resources for end-to-end enablement of EHR workflow set-up and eSource
- Comparative assessment of USDM and FHIR currently underway

 $\leftrightarrow \rightarrow \mathbb{C}$

©2023 TRANSCELERATE BIOPHARMA INC., ALL RIGHTS RESERVED

What Changes May the Future Bring?

Our purpose is there, the skills will be different *What are you doing to grow?*

