
Using R to generate Analysis Results Metadata (ARM)

Aik Hoe Seah, Principal Statistical Programmer, Cytel



Meet the Speaker
Aik Hoe Seah
Title: Principal Statistical Programmer
Organization: Cytel

Aik Hoe Seah, received his M.Sc (Statistics) from University of
Bern, Switzerland.
He is currently a Principal Statistical Programmer at Cytel, where
he has worked across many therapeutic areas (urology,
gastroenterology, ophthalmology, stroke, osteoarthritis, COVID-
19, oncology and many more), as well as leading submission
activities for FDA and EMEA, using CDISC SDTM and ADaM
standards.
He has been using SAS and R for more than 15 years and has
presented in SAS Global Forum, PhUSE, PharmaSUG and local
SAS forums.



Disclaimer and Disclosures

• The views and opinions expressed in this presentation are those of the 
author(s) and do not necessarily reflect the official policy or position of 
CDISC.

3

• The author have no real or apparent conflicts of interest to report.



Agenda
1. Introduction
2. Reasons to use R
3. Ingredients from ADaM specification
4. Adding ARM info back to XML
5. Conclusion



Introduction

5



Introduction
Programmers undergoing submission studies now have a few options:

1) to utilize functionality Pinnacle21 Enterprise edition (if available)
2) using their company’s in-house solutions (if available)
3) writing their own R code
4) modifying SAS code available from conference proceedings

6

Example of ARM 
section of define-XML



Reasons to use R
Reasons generally fall within the categories of either time or budget 
constraints. 
Some possible situations:
1) No budget to use Pinnacle21 Enterprise (P21E)

2) Having full customization ability internally within the organization.

3) Sponsor has P21E access, but define-XML is outsourced to
Clinical Research Organization (CRO).

4) Only lead programmer has access to P21E but is not available
currently (out of office? transitioned to other projects?), another
acting lead statistical programmer must take care of the task.

5) SAS server under maintenance but R server is working

6) And so on…

7



Ingredients from ADaM specification
Assumptions:
• ADaM specification template 

supported by Pinnacle 21 
Community (P21C)

• Existing sections (non-ARM) related 
to ADaMs have been completed

8

Steps
1) Import the ADaM specification (XLSX file) containing Analysis Displays, 

Results, Criteria, WhereClauses and Comments.
2) Create XML code by using ARM variables from ADaM specification.
3) Insert XML code back to the respective sections.

• Define-XML v2.0 is generated using ADaM spec by P21C
(if using Define-XML v2.1, adjustments to code can be made)



Step 1: Import the ADaM spec
Example of entries into 
the related ADaM spec 
tabs
• Analysis Displays
• Analysis Results
• Analysis Criteria
• WhereClauses
• Comments
• Documents

9



• Example of entries into the related ADaM spec tabs
Notes: 
If there are additional comments or documents to support method/derivation 
of output, it can also be referenced to the Comments and Documents tabs
Analysis_Criteria was removed from ADaM spec template of P21C v4.0.2 
(Previously existed in ~v4.0.1)
WhereClauses was removed from ADaM spec template of P21C v4.0.2 and 
now it's in ValueLevel (Previously existed in ~v4.0.1)

10

Step 1: Import the ADaM spec



Step 1: Import the ADaM spec

• Import ADaM spec in R
• There are a few ways to do so in R, using packages:
OpenXLSX, ReadXL, XLSX, XLConnect

In our example below, we are using OpenXLSX package

11

• We will also need Tidyverse and dplyr package (for some data 
manipulation steps later, e.g. str_trim, left_join, write.table functions)



Step 2: Create XML code from ADaM specification

1) Generate WhereClause section
Note: If generating ADaM spec using P21C v4.0.2, WhereClause is rolled into 
ValueLevel

12



Step 2: Create XML code from ADaM specification

13

2) To view the dataframe
created, we simply run
View(t_wc) 

The result is displayed
on the right



Step 2: Create XML code from ADaM specification

The following sections can also possibly be skipped if not used:
• 3) Generate Comments section 

14

• 4) Generate Leafs (links) section 



Step 2: Create XML code from ADaM specification
• 5) Generate ARM definition section (part 1)

15



Step 2: Create XML code from ADaM specification
• 5) Generate ARM definition section (part 2)

16



Step 2: Create XML code from ADaM specification
Once again, to view the dataframe created, we simply run View(t_ard) 
The result is displayed as below

17



Step 3: Insert XML code back to the respective sections
Method 1: Manual insertion
1) Print dataframe out to txt

2) Copy and insert created sections into the appropriate locations (end of 
each block)

18



Step 3: Insert XML code back to the respective sections

19

Example of ARM section in Define-XML v2.0 viewed with XSL stylesheet
No differences were found vs Define-XML generated via SAS



Step 3: Insert XML code back to the respective sections

Proposing Method 2: Use R4DSXML package to convert Define-XML to R 
dataframe
Steps:
1) Import previously created Define-XML (without ARM section) using 
package XML
2) Convert Define-XML to R dataframe
3) Convert and append previously created dataframe (for individual 
sections) to their locations within the R dataframe
4) Convert R dataframe back to XML structure
5) Finally, output the XML object into Define-XML file
6) Open Define-XML file with stylesheet and review any missing elements

20



Step 3: Insert XML code back to the respective sections

• Functions from 
R4DSXML package:

• getAR
• getARDISP
• getCT
• getDLMD
• getStudyMD
• getValMD
• getVarMD
• read.dataset.xml

21

Example of Variable Level Metadata



Future development

1) Improve efficiency of code for Define-XML v2.0 to cater to possibly more 
scenarios
2) Improve code to ensure it also runs smoothly with Define-XML v2.1
3) Automate process of inserting XML code back to the respective sections
(Have tried out some capabilities using XML package, but round trip of XML 
to List back to XML removes def tags, so need to figure out alternative way in 
combination with R4DSXML package)
4) Possibility of Rshiny app?

22



Conclusion

• We have suggested some methods for statistical programmers using R, to 
generate Analysis Results Metadata (ARM) by using available packages like 
OpenXLSX, Tidyverse, XML, R4DSXML, etc.

• Open-source software does the job too!

• Independent validation between different software is possible

23



References

• Ippei Akiya. 2021. “R4DSXML, Read CDISC Data Files”. R Package version 0.6.3. 
Available at https://github.com/i-akiya/R4DSXML

• Diane Wold and Jeff Abolafia, 2021. “CDISC Update Analysis Results Standard”. 
Proceedings of the 2021 Pharmasug North Carolina SDE. Available at 
https://www.pharmasug.org/download/sde/rtp2021/PharmaSUG-NCSDE_2021-08.pdf

• Kiran K. Kundurapu and Nancy Baeur, 2021. “FDA and PMDA Study Data Submission 
Distinctions”. PhUSE Optimizing the Use of Data Standards Working Group White Paper. 
Available at https://phuse.s3.eu-central-
1.amazonaws.com/Deliverables/Optimizing+the+Use+of+Data+Standards/WP047.pdf

• Srivathsa Ravikiran and Priscilla Gathoni, 2019. “One Click to Analysis Results Metadata”. 
Proceedings of the 2019 South East SAS User Group Conference. Available at 
https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-259_Final_PDF.pdf

• Stackoverflow community

24

https://github.com/i-akiya/R4DSXML
https://www.pharmasug.org/download/sde/rtp2021/PharmaSUG-NCSDE_2021-08.pdf
https://phuse.s3.eu-central-1.amazonaws.com/Deliverables/Optimizing+the+Use+of+Data+Standards/WP047.pdf
https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-259_Final_PDF.pdf


Thank You!

Your comments and questions are greatly valued and encouraged! 
For any possible errors, please kindly contact me at:

Aik Hoe Seah
Cytel Singapore
aikhoe.seah@cytel.com

mailto:aikhoe.seah@cytel.com


Q&A


