

Automating SDTM and ADaM Creation in Clinical Trials

Presented by Rie ICHIHASHI, Biostatistics and Programming, Sanofi

Disclaimer and Disclosures

- The views and opinions expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy or position of CDISC.
- {*Please disclose any financial relationship or conflict of interest relevant to this presentation here OR*}
- The author(s) have no real or apparent conflicts of interest to report.

Meet the Speaker

Rie Ichihashi

Title: Statistical Programmer Organization: Sanofi K.K.

Rie Ichihashi is a senior statistical programmer in Biostatistics and Programming Department at Sanofi. Rie has MS in biology, has 16 years of industry experience in statistical programming and data standards. Over the years participated in setting up Sanofi global SDTM/ADaM standards. More recently, her work has been focused on end-to-end standardization and automation of e-data submission.

Agenda

1. Introduction

- 2. ADaM and the concept of the **pseudo-code**
- 3. Nine Standard Derivation Types
- 4. Automation of programs
- 5. Benefits and challenges of **pseudo-code**

INTRODUCTION

- Automating SDTM and ADaM in clinical trials
- Importance of the standards and specifications
- Concept of the pseudo-code and how it helps with automation 疑似コード

ADaM and the concept of the pseudo-code

ADAM AND THE CONCEPT OF THE PSEUDO-CODE Derivation Pseudo-code Program code specifications 疑似コード condderivation Τf < ADT < TRTSDT ADT-TRTSDT+1 if Parameter 1 then ADY=ADT-TRTSDT; ADT is on or after else if ADT >= TRTSDT >. the treatment start then ADY=ADT-TRTSDT+1; date, ADT-Parameter 2 TRTSDT if ADT precedes the Parameter 3 treatment start date or Code Generator cdisc 7

ADAM AND THE CONCEPT OF THE PSEUDO-CODE

A specific way of writing the specifications to achieve automation.

For each ADaM variable in ADaM metadata, a **pseudo-code** is created with standard derivation rules.

疑似コード

Code Generator parses a pseudo-code to generate program code

Variable Metadata

•		Relative	Variable	Variable Label	Туре	Controlled	Source	Derivation	Assigned	Pseudo Code	Core	Instructions for Programmers
÷;•	Name	Order	Name			Terminology						
•									"[YEARS,			Conditionally required if AAGE is in
÷	ADSL	170	AAGEU	Analysis Age Units	text	AGEU			MONTHS,	assigned	Cond	
	ADSL	180	AGEGR1	Pooled Age Group 1	text	[AGEGR1]		For AGE of [xxx] to [xxx], AGEGR1 = [xxx]		recode	Cond	Define AGE ranges in accordance
••••	ADSL	190	AGEGR2	Pooled Age Group 2	text	AGEGRPE		For AGE of [xxx] to [xxx], AGEGR2 = [xxx]		condderivation	Cond	AGEGR2 is reserved for EudraCT a Preterm newborn - gestational age
	ADSL	210	SEX	Sex	text	SEX	DM.SEX			source	Req	
•	ADSL	220	RACE	Race	text	RACE	DM.RACE			source	Req	If the SDTM RACE is "MULTIPLE",
Į2	ADSL	230	RACEOR	Original Race	text	RACEC	SUPPDM.RAC EOR			source	Perm	
	ADSL	240	RACEGRy	Pooled Race Group y	text	[RACEGRy]		For RACE of [xxx] or [xxx], RACEGRy = [xxx]		recode	Perm	Character description of a grouping used for special case when study h

ADAM AND THE CONCEPT OF THE PSEUDO-CODE

Pseudo-code is also applicable to value level derivations.

WhereClauses, the main purpose is to provide metadata for Value Level Metadata 疑似コード

Dataset	Variable	Where	Compa	Check	Value Label	Derivation	Pseudo Code
Name	Name	Variable	rator	Value			
ADVS	AVAL	PARAMCD	EQ	WEIGHT	Weight (kg)	VS.VSSTRESN Where PARAMCD=VS.VSTESTCD	copy_stres
ADVS	AVAL	PARAMCD	EQ	DIARP		VS.VSSTRESN Where PARAMCD=VS.VSTESTCD. An averag record is creted for triplicate measurements on the same date.	
ADVS	AVAL	PARAMCD	EQ	SYSBP	•	VS.VSSTRESN Where PARAMCD=VS.VSTESTCD. An averag record is creted for triplicate measurements on the same date.	

Nine Standard Derivation Types

NINE STANDARD DERIVATION TYPES

Pseudo Code	Description
• source	Indicates the variable has an origin of "Predecessor" where the source variable is defined in the "Source" column. This is used mainly for SDTM predecessor variables
assigned	Assignment of a constant value for all the records in a dataset
derivation	Indicates that detailed derivation specs are available in the "Derivation" column in the "Variable Metadata" tab
recode	Indicates that detailed derivation algorithm is available in the "recode" tab
rename	Renaming a variable. This is used when a temporary variable is renamed into the ADaM dataset variable. The most common example is –DT,DTM, and –TM variables. The ISO8601 datetime variables (e.g. EXSTDTC) in a source SDTM variable that is converted to temporary SAS date, datetime, and time variables (e.g. EXSTDT, EXSTDTM, and EXSTTM) early in the ADaM program, and renamed to suitable ADaM variable names (e.g. ADEX.ASTDT, ADSL.TRTSTDTM, etc.)
condderivation	Indicates that detailed derivation algorithm is available in the "condderivation" tab
lookup	Simple proc sql merge of 2 datasets, using subset condition if needed
std_function	Complex derivations which involve multiple datasets and/or multiple steps of computations that cannot be classified into the derivation types described above
whereclauses	Indicates that pseudo-code for value level parameters is populated in the VLM table in the "WhereClauses" tab
1	

1.

NINE STANDARD DERIVATION TYPES

• Three simple pseudo-codes "**source**", "**derivation**", and "**assigned**". These pseudo-codes use the 3 corresponding variable metadata elements directly. Thus, the column which has the same name as the pseudo-code is used to pass the key element to the code generator.

Columns for additional information for the code generator

	Dataset	Variable	Variable Label	Туре	Source	Derivation	Assigned	Pseudo Code
	Name	Name						
	ADSL	STUDYID	Study Identifier	text	DM.STUDYID			source
•			Total Treatment					
	ADSL	TRTDURD	Duration (Days)	integer		TRTEDT - TRTSDT + 1		derivation
	ADEG	AWU	Analysis Window Unit	text			Assigned as "DAYS"	assigned

NINE STANDARD DERIVATION TYPES

 On the other hand, when the pseudo-code is "recode", "rename", "condderivation", "lookup", "std_function" or "whereclauses", additional information needs to be entered in another tab that has the same name as the pseudo-code.

Tabs for additional information for a code generator

	Dataset	Variable	Variable Label	Туре	Source	Derivation	Assigned	Pseudo	Core	Instructions for Programmers
4	Name	Name						Code		
						AE.AEREL. If AEREL is				For Pharma & Pasteur: If AEREL is derived due
	ADAE	AREL	Analysis Causality	text		missing, AREL=[xxx].		condderivation	Perm	"Related" as per Safety Guidelines), AREL shou
••••							Numeric code			The numeric code for AREL. One-to-one map t
-	ADAE	ARELN	Analysis Causality (N)	integer			for ARFI	recode	Perm	
	•	Datase	t Metadata Vari	able M	etadata	recode rename	condderiv	vation loo	kup	std_function WhereClause (+)

DETAILS ABOUT DERIVATION TYPES — "source"

1. Copy from a variable in the main source dataset (pseudo-code= "source").

Variables Example	Rendered SAS [®] code
ADSL.STUDYID, ADSL.USUBJID, ADSL.AGE, etc.	Keep STUDYID USUBJID AGE;

Pseudo-code "source" in the Variable Metadata tab

100			Variable Label	Туре		Source	Derivation	•	Pseudo
	Name 🖵	Name 🖵	•		•	-	-	-	Code 🚽
	ADSL	STUDYID	Study Identifier	text		DM.STUDYID			source
4	ADSL	USUBJID	Unique Subject Identifier	text		DM.USUBJID			source
	ADSL	AGE	Age	intege	er	DM.AGE			source
	<u>با</u>		e Metadata 🛛 recode				lerivation lookup	std_function	on (+) :
		ADSL	(Subject-Level Analysis) -	[ADaMI	G 1	.1]			

	Variable	Label / Description		-	Controlled Terms or ISO Format	Origin / Source / Method / Comment
	STUDYID	Study Identifier	text	12		Predecessor: DM.STUDYID
cdisc	USUBJID	Unique Subject Identifier	text	11		Predecessor: DM.USUBJID

14

DETAILS ABOUT DERIVATION TYPES — "derivation"

 2. Simple computation which appears in define.xml as the computational algorithm is directly used as the program code (pseudo-code = "derivation").

Variable	es Example	Rendered SAS [®] code
Total Tre	eatment Duration (Days) (ADSL.TRTDURD).	TRTDURD = TRTEDT - TRTSDT + 1;

Pseudo-code "derivation" in the Variable Metadata tab

			Variable Label	Туре	Source	Derivation	Assigned	1 1
	Name 🖵	Name 🖵	~	-	-	•	-	Code 🚽
4								
	ADSL	TRTDURD	Total Treatment Duration (Days)	integer		TRTEDT - TRTSDT + 1		derivation
	<u>بر</u>	Variable	Metadata recode renar	ne co	ondderiva	tion lookup std	_function	(+) : 🖪

15

Variable	Label / Description			Controlled Terms or ISO Format	Origin / Source / Method / Comment
TRTDURD	Total Treatment Duration (Days)	integer	3		Derived (Source: Sponsor) TRTEDT-TRTSDT+1

DETAILS ABOUT DERIVATION TYPES — "assigned"

3. Assignment of a constant value for all the records in a dataset (pseudo-code = "assigned").

Variables Example	Rendered SAS [®] code
Analysis Window Unit (ADEG.AWU)	AWU = "DAYS";

Pseudo-code "assigned" in the Variable Metadata tab

	taset	1		Variable Labe	el 🛛			Туре	Sour	ce	Deriv	ation	Assigned		Pseudo	
	T	Nan AW	-1	Analysis Wind	ow Unit	t	- 1	text		•		•	Assigned as "DA	YS"	Code assigned	*
•	<u>ب</u>		/ariabl	e Metadata	reco		ena	me	conc	Ideriv	ation/			unction 🕂	:	
	Variab	ble	Where C	ondition	L	Label / De	escrij	ption	Туре	Lengt Displ Form	ay	Contro Forma		Origin / Source / Me	thod / Comm	ient
	AWU				4	Analysis Wir	ndow	Unit	text		4	<u>Unit - A</u> • "DAYS		Assigned (Source: Spons Assigned as "DAYS".	or)	
(COI	SC			I							I			1	6

DETAILS ABOUT DERIVATION TYPES — "recode"

4. Recode each value of a source variable to another value (pseudo-code = "recode").

Variables Example	Rendered SAS [®] code
Pooled Age Group 1 (ADSL.AGEGR1) Pooled Age Group 1 (N) (ADSL.AGEGR1N)	<pre>if . < AGE < 60 then do; AGEGR1 = "< 60 years "; AGEGR1N = 1; end; else if 60 <= AGE <= 70 then do; AGEGR1 = "60-70 years"; AGEGR1N = 2; end; else if 70 < AGE then do; AGEGR1 = "over 70 years; AGEGR1N = 3; end;</pre>

DETAILS ABOUT DERIVATION TYPES — "recode" (cont.)

Pseudo-code "recode" in the Variable Metadata tab

	Dataset			Variable Lab	el		Туре	•	Source	Derivation		Assigned		seudo	'
•	Name	Nai	ne 🖵			-		-	-		-		- Co	ode	-
•••	ADSL	AG	EGR1	Pooled Age G	roup 1		text			For AGE under 6	60,		rec	code	•
•	ADSL	AG	EGR1N	Pooled Age G	roup 1 (N)		integ	er				Numeric code for AGEGR1	rec	code	
	▶ at	а	Variabl	e Metadata	recode	renam	e c	on	dderivatio	n lookup s	std_	function WI 🕂 🗄	•		

Corresponding "recode" tab

	Detec					Output Value
	Datase				•	Output Value
	t Name	Variable Name	Source Variable	Value	(Char)	(Num)
	ADSL	AGEGR1 AGEGR1N	AGE	(null:60)	< 60 years	1
	ADSL	AGEGR1 AGEGR1N	AGE	[60:70]	60-70 years	2
	ADSL	AGEGR1 AGEGR1N	AGE	(70	over 70 years	3
•	·	Variable Metadata	recode rename	condderivation	lookup std	<mark>_function</mark> Wh

DETAILS ABOUT DERIVATION TYPES — "rename"

5. Rename a variable (pseudo-code = "rename").
This is used when a temporary variable is renamed in the ADaM dataset. The most common example is --DT, --DTM, and --TM variables.

Variables Example	Rendered SAS [®] code
Analysis Start Date (ADEX.ASTDT) Analysis Start Datetime (ADEX.ASTDTM) Analysis Start Time (ADEX.ASTTM)	rename EXSTDT = ASTDT EXSTDTM = ASTDTM EXSTTM = ASTTM;
SDTM EX EXSTDTC EXENDTC EXENDTC EXENDTC COISC	ASTTM AENDT

DETAILS ABOUT DERIVATION TYPES — "rename" (cont.)

Pseudo-code "rename" in the Variable Metadata tab

			Variable Label	Туре	Source	Derivation	Assigned	Pseudo Code	
•	Name	Name 🖵	-	-	-	•	-		-
	ADEX	ASTDTM	Analysis Start Datetime	integer		or EX.EXSTDTC		dataset_derivation(DTC)	rename
•	ADEX	ASTDT	Analysis Start Date	integer		date portion of		dataset_derivation(DTC)	rename
	ADEX	ASTTM	Analysis Start Time	integer		time portion of		dataset_derivation(DTC)	rename
	\	Variable Me	etadata recode rena	ame c	ondderiva	tion lookup st	d_function Where(🤆) : •	

Corresponding "rename" tab

COISC

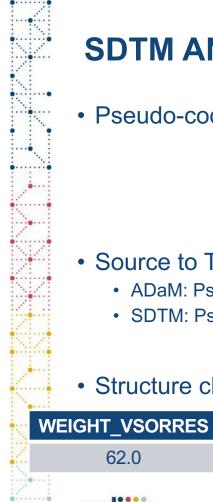
	Dataset					
	Name	Variable Name		Sou	rce Variable	e Name
•	ADEX	ASTDTM ASTDT AST	ТМ	EXS	STDTM EX	STDT EXSTTM
•	· ···	Variable Metadata	reco	de	rename	condderivation
•						

DETAILS ABOUT DERIVATION TYPES — "condderivation"

6. Derivation of a variable based on if-then conditions of the dependent variable(s) (pseudo-code = "condderivation").

Variables Example	Rendered SAS [®] code
Analysis Relative Day (ADY). Derivations are different depends whether ADT is before TRTSDT or on/after TRTSDT	if . < ADT < TRTSDT then ADY = ADT - TRTSDT; else if ADT >= TRTSDT >. then ADY = ADT - TRTSDT + 1;

DETAILS ABOUT DERIVATION TYPES — "condderivation" (cont.)


... Pseudo-code "condderivation" in the Variable Metadata tab

-	Datase	t Variable	'	Variable	Label		Туре)	Source	ource Derivation		Assigned		Pseudo Code			
•	Name 🚚	Name	T			-		-		-			-		•		-
1										[ADT-T	RTSDT+1 if	ADT is on or after	the		ſ		
•										treatme	nt start date	e, ADT-TRTSDT if A	١DT				
	ADEX	ADY		Analysis	Relative D	ay	integ	er		precede	es the treatn	nent start date]				condderivation	
	⊢	Variable N	Иe	tadata	recode	rer	name		condd	erivation	lookup	std_function	Whe	ere((+)	:	

Corresponding "condderivation" tab

	Dataset Name	Variable Name	Derivation Condition	Output Variable Value	Source Variable or Formula
1	ADEX	ADY	. < ADT < TRTSDT		ADT - TRTSDT
Ŧ	ADEX	ADY	ADT >= TRTSDT > .		ADT - TRTSDT + 1
•	 Dataset 	Metadata Varia	ble Metadata recode	rename condderivatio	n lookup std_function W

COISC

SDTM AND PSEUDO-CODE

Pseudo-code

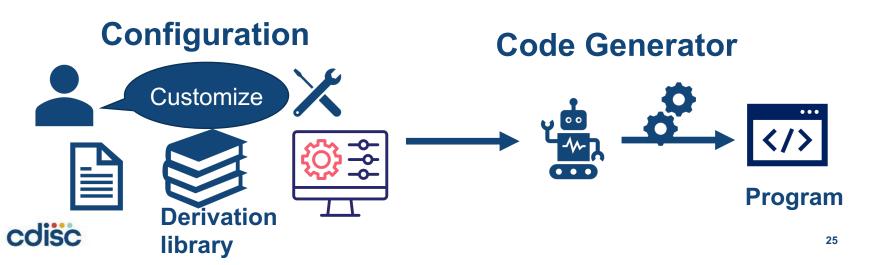
SDTM specific pseudocode for mapping of collected data

Source to Target

- ADaM: Pseudo-code is defined for each target ADaM variable
- SDTM: Pseudo-code is defined for each source CRF field

			VSTESTCD	VSORRES
Structure ch	ange		WEIGHT	62.0
WEIGHT_VSORRES	HEIGHT_VSORRES	TEMP_VSORRES	HEIGHT	160
62.0	160	36		
			TEMP	36

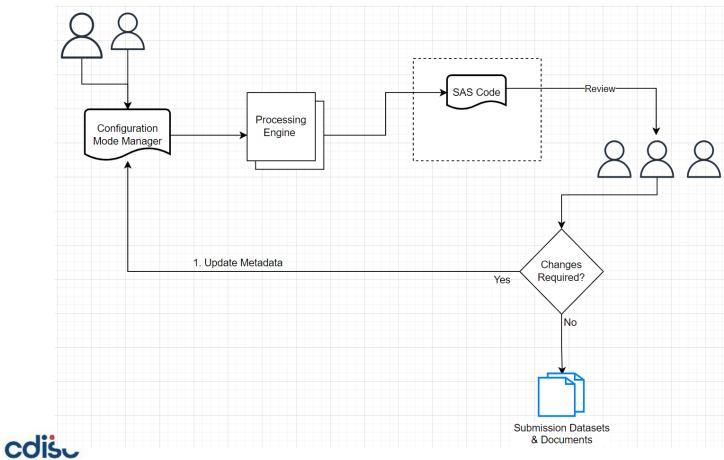
Pseudo-code common


with ADaM for derived

variables

Automation of programs

AUTOMATION OF PROGRAMS


- To achieve automation, we are taking a **configuration-based approach**
- To derive a variable, we created a generic configuration model, that captures all necessary information. The **code generator** is utilizing this configuration along with other parameters (program formats etc.) to generate output code.
- A **code generator** is a software tool that automatically generates code based on input specifications or parameters.

AUTOMATION OF PROGRAMS

.

.......

Benefits and challenges of pseudo-code

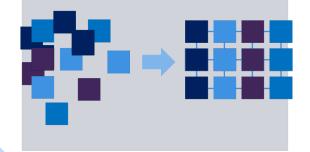
BENEFITS AND CHALLENGES OF PSEUDO-CODE

Even with the project still in development, these are the proposed benefits of the pseudo-codes:

Agnostic

 Pseudo-code is language agnostic

Consistent


 Pseudo-code and additional user input in corresponding columns and tabs serve as the source for code generator to generate the program as well as the derivation specifications for the programmers

Spec

/.XML

Structured

 Pseudo-code provides a structure to the definition of derivation algorithms

BENEFITS AND CHALLENGES OF PSEUDO-CODE

••We tested out code generator on several pilot studies, these were the challenges we faced:

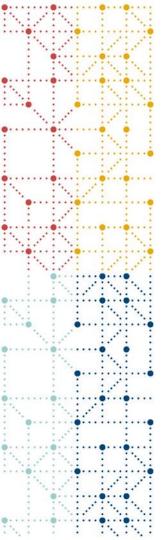
- Pseudo-code and code generator functions are new concepts and need user training and support.
- Could be challenging at times to define correct/complicated pseudo-codes at the study level.
- This process adds a non-trivial layer of metadata which requires modern tools to be able to preview future SAS codes and enter the pseudo-codes.

ACKNOWLEDGEMENT

This presentation is based on the paper written by Lyubov Sushchenko (Lead author) and Rie Ichihashi (Co-author): <u>Automating SDTM and ADaM Creation in Clinica</u> <u>Trials</u>

ACKNOWLEDGEMENT

The authors of the paper would like to express their gratitude to the Sanofi ART team, for their support and ideas, especially Faisal Mohammed. ADaM MAP team for their dedication and effort. B&P programmers for providing feedback and volunteering in testing out new tools. And Beilei Xu for inspiring to write this paper.


CONTACT INFORMATION

Your comments and questions are valued and encouraged.

•Contact the authors at:

Author Name: Lyubov Sushchenko	Author Name: Rie Ichihashi
Company: Sanofi US	Company: Sanofi K.K.
Email: Lyubov.Sushchenko@sanofi.com	Email: Rie.Ichihashi@sanofi.com
Web: https://www.sanofi.com	Web: https://www.sanofi.com

Thank You!

