

Blockchain Technology for clinical data sharing

Kentaro Arai, Novartis Pharma K.K.

Meet the Speaker

Kentaro Arai

Title: Statistical Programmer

Organization: Novartis Pharma K.K.

Team activity related to Blockchain

2019 - Now: CJUG-SDTM Blockchain team
 2019 - 2020: JPMA Blockchain task member
 2020 - 2021: Dell technologies DX acceleration program(Supported by Dell & NAIST)

Events related to Blockchain

>2018: Hackathon event sponsored by EMURGO and Tokyo University of Science

>2019: Hackathon event sponsored by METI (Best award)

>2020: DX contest sponsored by DELL technologies (Second place)

CJUG-SDTM Blockchain team

- CJUG: CDISC Japan User Group
- Team formed in May 2019 as sub team in CJUG-SDTM
- 7-10 members: Stat programming, Data management, System expert, etc.

Disclaimer and Disclosures

- The views and opinions expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy or position of CDISC and their organization.
- The author(s) have no real or apparent conflicts of interest to report.

Agenda

- 1. Overview of Blockchain technology
 - Background
 - Elemental technologies and Mechanism of Blockchain
 - > Topics in Pharma

2. PoC conducted by CJUG Blockchain team

- Related technologies: IPFS, ABE
- Overview of PoC

Overview of Blockchain technology

- Background
- Elemental technologies and Mechanism of Blockchain
- > Topics in Pharma

What is Blockchain?

- Core technology of Bitcoin
- Core technology of Web3, NFTs, DAO etc.
- P2P based decentralized system
- Store the right data in the block by consensus algorism
- PoC is ongoing in Pharma industry

Smart contract

- Programs can be embedded on the blockchain
- Transactions are verified and recorded on the blockchain
- Automated transactions are possible without administrator
- Reduction of system usage fees and intermediary fees are expected
- Once a smart contract program is deployed on the blockchain, it cannot be modified
- Not suitable for transactions that require flexible exchange

- Tokenized digital content on the blockchain
- Manage the ownership for various digital content such as art, music, and virtual items
- NFT cannot be duplicated because managed by Blockchain
- Monetization is also possible through NFT transactions

DAO: Decentralized Autonomous Organization

- Guarantees transparency and reliability as managed by program
- Tasks run under decentralized system without administrator

8 8

Web3.0

Centralized		Decentralized
Web1.0 (1990~200x)	Web2.0 (200x~2020)	Web3.0 (2021~)
	Platform	Decentralized Platform
Read the contents Ex.) Simple web page	Social media and user-generated content Ex.) SNS	 Blockchain based decentralized system. Manage the ownership of data. Exchange the value Ex.) NFT, DAO, DeFI, Dapps

Pros/Cons of Blockchain

Pros

- Tamper resistance
 - If data is altered, different hash value will be generated.
 - Huge calculation or consensus process is required if data is altered.
- Benefit of decentralization
 - System down resistance
 - Intermediary institution is not required
- Transparency

cdisc

All transactions are open and can be traced

Cons

- Scalability
 - Limit of data block can store.
 - Limit of generating blocks at time
 - Thus, transactions amount is limited
- Privacy
 - Transactions can be seen by all
- Capacity
 - Not suitable to store large data

Recent topic in Pharma

- Clinical trial using Blockchain based EDC system
 - Tamper-resistance check function
 - Function to guarantee compliance with procedures by smart contract
 - >NFT of clinical data for future secondary use

Reference: https://jrct.niph.go.jp/en-latest-detail/jRCT1030220258

- A major pharmaceutical company released a roadmap for web3 Reference: <u>https://note.chugai-pharm.co.jp/n/nbd1b39eaab4b</u>
- NFT platform for personal healthcare data Reference: <u>https://aimedis.com/exchange</u>

Recent topic in Pharma

PharmaLedger (2020-2023)

- Health data
 - Personalized Medicine
 - Clinical Trial Recruitment
- Clinical Trials
 - Medical Device IOT
 - ➢ eConcent
- Supply chain
 - Clinical Supply Traceability
 - Finished Goods Traceability
 - ➢ eLeaflet ePI
 - > Anti-Counterfeiting

Reference: https://pharmaledger.eu/

PoC conducted by CJUG Blockchain team

- Related technologies: IPFS, ABE
- Overview of PoC

Team members

- CJUG-SDTM Blockchain team (5~8 members)
- Dell Technologies (Oct 2020 Oct 2021)
 - ➤ Facilitator
 - Technical support
- Nara Institute of Science and Technology (Oct 2020 Oct 2021)
 - Technical support

Theme of investigation

Investigate the effective use of Blockchain in Pharma industry
 Explore effective use of Blockchain in clinical data sharing
 PoC for access control of clinical data using Blockchain

Referred concept: IPFS × Blockchain × ABE

Rerefence: S. Wang *et al.*: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

- IPFS(Interplanetary File System): P2P based distributed database
- Access control by the combination of smart contract and ABE*(Attribute-based encryption)

*ABE: Multiple decryption keys can be created for one encryption key according to attributes

Only the data owner can control the access right

IPFS: InterPlanetary File System

The data are store in P2P based system

Hash value is used for the data location

Condition for access

- The data is stored in any of the nodes
- Hash value information is available

• In case of large data such as clinical data, data can be stored by dividing it among nodes.

• Advantage: Tamper resistance, System down resistance, Censorship resistance

ABE: Attribute-Based Encryption

- Multiple decryption keys can be created for one encryption key according to attributes
- Institution of PKG (private key generator) and data server are separated
- In case of normal ABE system, PKG can access to all data, but this can be solved by combining IPFS and Blockchain

PoC : IPFS × Blockchain × ABE

Expected use case

- Consortium type should be used
- Decentralized management system will be possible
- Only the data owner can manage the access right

Expected advantage of Blockchain × IPFS × ABE system

Mechanism of data access control

- > Only data Owner can manage the access control in consortium network
- Trustless system (Don't need to trust third party)

• Advantages of IPFS

- ➤ Tamper resistance
- System down resistance
- Server load distribution
- Censorship resistance
- Transparency and tamper resistance of transaction history by recorded in Blockchain
- Possibility of cost down

Challenges to feasibility

- Only encryption is not enough in terms of personal information protection
- Further evaluation of ABE encryption is needed
- Unification of data standards is needed

Summary of PoC

• It was confirmed that a series of assumed flows could be constructed

- Storing and retrieving data to and from IPFS
- Writing and retrieving access information to Blockchain
- Encryption/decryption with public encryption and ABE encryption

• Future plan

- Construction and verification of a system with a detailed flow
- Verification of encryption reliability
- Verification of expected operation cost
- > Verification of operational feasibility with large data (ex. encryption of large data)
- > Investigation of a method to manage data by linking it to individual patients

Key takeaways

- Blockchain technology
 - Decentralized system
 - Advantages and disadvantages should be considered when applying
 - Some PoC have been done in Pharma industry
- Result of PoC
 - Only Data Owner can manage the access rights
 - ➢ Further PoC is needed

Thank You!

