
How to Extend and Run CORE
Sam Hume, DSc

CDISC
VP, Data Science

Session 6 Track B: CORE Implementation

Meet the Speaker
Sam Hume
Title: VP, Data Science
Organization: CDISC

Sam Hume leads the CDISC Data Science team, which collaborates with
CDISC staff and stakeholders to develop tools and standards that support
clinical and translational data science. Sam directs delivery of the CDISC
Library metadata repository that houses all CDISC standards, co-leads
the CDISC Data Exchange Standards team, co-leads CORE, and leads
the technical CDISC RWD efforts. He has 25 years’ experience in clinical
research informatics and has held a number of senior technology
positions in the biopharmaceutical industry. He holds a doctorate in
information systems.

Agenda
1. CORE Software Overview
2. Extending the CORE Engine
3. Creating an Example Extension
4. Running the CORE Engine
5. Using the CORE Engine

Overview
A bit of background information to get us started

CORE Software: Engine and Rule Editor

• Each project
• Has a public GitHub repository on the cdisc-org account and is listed on the COSA Directory
• Has been released under the MIT open-source license
• Development is led by CDISC
• Still under development, but are being actively used
• Can be extended (supports the development of software extensions)

• CORE Engine
• Written in Python
• Makes use of the Venmo Business Rule Engine

• CORE Rule Editor
• Written in TypeScript
• Makes use of the VSCode editor

5

Extending the CORE Engine
How to extend the CORE Engine

CORE Engine extensibility

• Operations
• Define an operation on a dataset, e.g.,

variable_permissibility, mean

• Dataset Builder
• Used to define a dataset to match a rule

type

• Dataset Reader
• Used to define dataset formats for

reading, e.g., SAS v5 XPORT, Dataset-
JSON, CSV

• Data Service
• Define the service from which the dataset

will be read, e.g., local, Azure, AWS

• Checks
• Used in rule tests, e.g., equal_to,

non_empty, matches_regex

• Cache
• Used to interface with a cache for rules

and metadata, e.g., in memory, Redis

• Reporting
• Defines a type of reporting, e.g., Excel,

JSON

• Logging
• Specifies what and to what level of

detail logs are generated

7

Creating your own operations and data services

8

Factory
Interface

Operations
Factory

Data
Service
Factory

Base
Operation

Base Data
Service

Max Date Mean Variable
Exists

Local Data
Service

Blob Data
Service

Creating an Example Extension
Creating a new operation for use in conformance rules

Extending CORE: Adding an Operation

• Typically used to pre-process data to facilitate the
use of Checks

• May generate new dataset columns with values
that can be referenced in a rule

• Example operations:
• distinct
• max_date
• mean
• variable_exists
• variable_permissibility
• Many more…

• Easily add new operations

10

Operations:

Creating a new operation
• Inherit the Base Operation and implement the _execute_operation method

11

• Register the method so the engine can use it
• Update the rule schema
• Implement a rule that uses the operation

Create a rule that uses the new is_odd operation

• The is_odd operation is used to create a
new column that contains “true” if AGE
is an odd number

• The Check examines “all” records to find
cases where the $age_is_odd column
equals “true”

• A report is generated identifying cases
where this rule fired

• This could have been implemented as a
check operator instead of an operation

12

Results from executing the rule

• The test dataset contains 2 subjects
with ages: 26 and 27.

• The rule fired for the subject with
AGE = 27

• Running engine with this single
rule generates an Excel report
(bottom)

• CORE-Report-2023-03-25T08-56-38

13

Running the CORE Engine
How to run the CORE Engine today

Running the CORE Engine
• CLI executable available in GitHub

• Cached rules
• Windows, Mac, and Linux install packages
• Unzip and run
• Will need datasets to validate

• Engine available on PyPI
• Engine is a component that can be used in your own code

• Desktop versions
• Vendor released versions of CORE
• Includes a user-friendly UI
• Easier for non-technical users to evaluate

• View a short CORE demonstration
• https://www.cdisc.org/core
• See CORE on GitHub tab

15

https://www.cdisc.org/core

CLI Deployment – in GitHub under Releases

16https://github.com/cdisc-org/cdisc-rules-engine

Download the latest CLI CORE Engine

17

Running CORE at the command-line

• Above shows running the CORE Engine on Windows
• Used SDTMIG v3.2 test data (with optional Define-XML file)
• See README.md documentation in the GitHub repository

• c:\>core --help

18

CORE report generated by the test run

19

CORE Report
• Generated in Excel
• Placed in the CORE folder
• Datetime stamp in name

Using the CORE Engine
Thoughts on deploying and using CORE

CORE Engine Deployments

• Code repository in GitHub
• CLI executable version
• PyPI library
• Stable and Development releases
• Base testing and validation package
• Respond to reported issues

• Validated production versions
• Desktop CORE with UI
• Web-based CORE package with UI
• Cloud-based deployments
• Integrated into vendor platforms
• May provide

• Hosting
• Support
• Rule development
• Complete validation package

21

CDISC Provides Vendor Provides

Using CORE
• Anticipate many will deploy CORE in multiple ways

• Using CORE within a vendor’s platform
• Setting up CORE to run in your organizations cloud environment
• Running a desktop version of CORE
• Running the command-line version of CORE
• Running the CORE rules using alternative engines
• Building tools that incorporate the CORE Engine

• CORE can be run at no cost allowing organizations to have run the CORE
rules using a mix of deployment options

• CORE rules may be used in conjunction with other rule engines

• CORE rules may be developed for additional scenarios beyond submissions
22

Thank You!

Sam Hume

shume@cdisc.org

