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Overview
A bit of background information to get us started



CORE Software: Engine and Rule Editor

• Each project 
• Has a public GitHub repository on the cdisc-org account and is listed on the COSA Directory
• Has been released under the MIT open-source license
• Development is led by CDISC
• Still under development, but are being actively used
• Can be extended (supports the development of software extensions)

• CORE Engine
• Written in Python
• Makes use of the Venmo Business Rule Engine

• CORE Rule Editor
• Written in TypeScript
• Makes use of the VSCode editor
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Extending the CORE Engine
How to extend the CORE Engine



CORE Engine extensibility

• Operations
• Define an operation on a dataset, e.g., 

variable_permissibility, mean

• Dataset Builder
• Used to define a dataset to match a rule 

type

• Dataset Reader
• Used to define dataset formats for 

reading, e.g., SAS v5 XPORT, Dataset-
JSON, CSV

• Data Service
• Define the service from which the dataset 

will be read, e.g., local, Azure, AWS

• Checks
• Used in rule tests, e.g., equal_to, 

non_empty, matches_regex

• Cache
• Used to interface with a cache for rules 

and metadata, e.g., in memory, Redis

• Reporting
• Defines a type of reporting, e.g., Excel, 

JSON

• Logging
• Specifies what and to what level of 

detail logs are generated
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Creating your own operations and data services

8

Factory 
Interface

Operations 
Factory

Data 
Service 
Factory

Base 
Operation

Base Data 
Service

Max Date Mean Variable 
Exists

Local Data 
Service

Blob Data 
Service



Creating an Example Extension
Creating a new operation for use in conformance rules



Extending CORE: Adding an Operation

• Typically used to pre-process data to facilitate the 
use of Checks

• May generate new dataset columns with values 
that can be referenced in a rule

• Example operations:
• distinct
• max_date
• mean
• variable_exists
• variable_permissibility
• Many more…

• Easily add new operations
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Operations:



Creating a new operation
• Inherit the Base Operation and implement the _execute_operation method
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• Register the method so the engine can use it
• Update the rule schema
• Implement a rule that uses the operation



Create a rule that uses the new is_odd operation

• The is_odd operation is used to create a 
new column that contains “true” if AGE 
is an odd number

• The Check examines “all” records to find 
cases where the $age_is_odd column 
equals “true”

• A report is generated identifying cases 
where this rule fired

• This could have been implemented as a 
check operator instead of an operation
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Results from executing the rule

• The test dataset contains 2 subjects 
with ages: 26 and 27.

• The rule fired for the subject with 
AGE = 27

• Running engine with this single 
rule generates an Excel report 
(bottom)

• CORE-Report-2023-03-25T08-56-38
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Running the CORE Engine
How to run the CORE Engine today



Running the CORE Engine
• CLI executable available in GitHub

• Cached rules
• Windows, Mac, and Linux install packages
• Unzip and run
• Will need datasets to validate

• Engine available on PyPI
• Engine is a component that can be used in your own code

• Desktop versions
• Vendor released versions of CORE
• Includes a user-friendly UI
• Easier for non-technical users to evaluate

• View a short CORE demonstration
• https://www.cdisc.org/core
• See CORE on GitHub tab
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CLI Deployment – in GitHub under Releases
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Download the latest CLI CORE Engine
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Running CORE at the command-line

• Above shows running the CORE Engine on Windows
• Used SDTMIG v3.2 test data (with optional Define-XML file)
• See README.md documentation in the GitHub repository

• c:\>core --help 
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CORE report generated by the test run
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CORE Report
• Generated in Excel
• Placed in the CORE folder
• Datetime stamp in name



Using the CORE Engine
Thoughts on deploying and using CORE



CORE Engine Deployments

• Code repository in GitHub
• CLI executable version
• PyPI library
• Stable and Development releases
• Base testing and validation package
• Respond to reported issues

• Validated production versions
• Desktop CORE with UI
• Web-based CORE package with UI
• Cloud-based deployments
• Integrated into vendor platforms
• May provide

• Hosting
• Support
• Rule development
• Complete validation package
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Using CORE
• Anticipate many will deploy CORE in multiple ways

• Using CORE within a vendor’s platform
• Setting up CORE to run in your organizations cloud environment
• Running a desktop version of CORE
• Running the command-line version of CORE
• Running the CORE rules using alternative engines
• Building tools that incorporate the CORE Engine

• CORE can be run at no cost allowing organizations to have run the CORE 
rules using a mix of deployment options

• CORE rules may be used in conjunction with other rule engines

• CORE rules may be developed for additional scenarios beyond submissions
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