

Automatic Defining ADaM for new Clinical Studies Using Machine Learning

Thomas Rye Olsen, Student at Department of Computer Science, University of Copenhagen

Henning Pontoppidan Föh, Statistical Programming Director, Biostatistics, Novo Nordisk A/S

Meet the Speakers

Thomas Rye Olsen

Title: Student

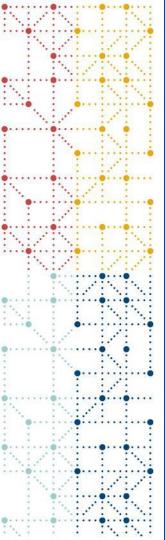
Organization: Department of Computer Science, University of Copenhagen

- Studying Machine Learning and Data Science on his third year
- Have been working with Biostatistics, Novo Nordisk applying ML
- Recently become a student assistant at Novo Nordisk

Henning Pontoppidan Föh

Title: Statistical Programming Director Organization: Biostatistics, Novo Nordisk A/S

- 15+ years of pharmaceutical industry experience, within various arears
- MSc in Physics and worked as researcher as well as SAS consultant
- Currently main interest is the strategic clinical development for new drugs and indications


Disclaimer and Disclosures

- The views and opinions expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy or position of CDISC nor of Novo Nordisk
- The author(s) have no real or apparent conflicts of interest to report.

Agenda

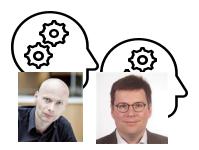
- 1. Background
- 2. The idea of using ML for ADaM definition
- 3. Details of the ML algorithm
- 4. Results and usability

Background

Data is gold

Data = clinical data

- Data collected from patients
 - Demographics, AEs, endpoints
- Highly regulated by authorities + CDISC
- Available for all studies in standardised format
- All pharma companies have it from their studies


clinical metadata

- Descriptions of studies, created by Novo staff
 - Protocol Metadata document (PMD) containing items such as flowchart, study descriptive keywords, etc
 - Analysis data/ADaM description (within the CST)
- Generally, not regulated by authorities
- Available for all studies running in the last decade
- A unique feature of Novo Nordisk !?

+

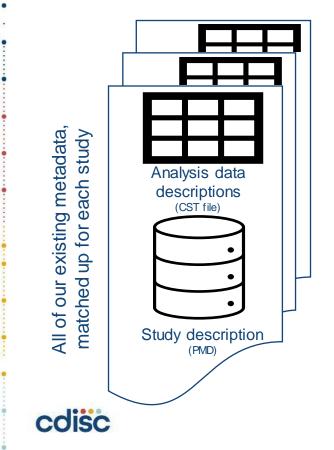
A quest for gold requires 3 items...

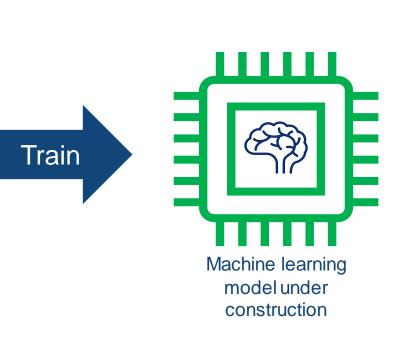
Bright minds

Hard labour

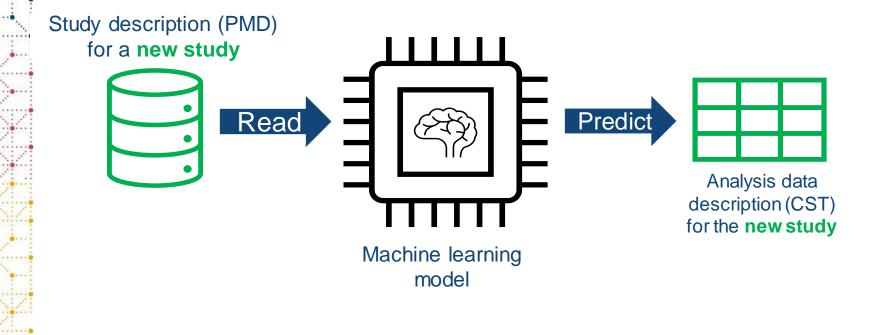
Someone who what to spend the gold

Let's mine the metadata gold


The idea of using ML for ADaM definition


Creating analysis metadata today

• For every study, the trial programmer has to create a structured description of all analysis (ADaM) datasets in an Excel sheet (CST)


	table 🗳	T column	label	• order	• type • le	ength -	displayforma *	Core	Origin	xmlcodelist	 origindescrip
	ADAE	AENTME	Analysis End Time Imputation Flag		C	1		Cond	Derived	TIMEFL	
	ADAE	AENDTM	Analysis End Date/Time		N	8	datetime18.	Cond	Derived		
 Both a function 	al and	a requi	rement for define	xml	N	8		Perm	Derived		
	unu unu				С	64		Perm	Predecessor		AE.AEENDTC
	ADAE	ADURN	Analysis Duration (N)		N	8		Perm	Derived		
	ADAE	ADURU	Analysis Duration Units		c	40		Cond	Assigned		
	ADAE	ADURC	Analysis Duration		с	40		Perm	Derived		
	ADAE	TRLPROD1	Trial Product 1		C	20		Perm	Predecessor		SUPPAE.QVAL
 Takes days/we 	eks or	WOIK	Trial Product 2		C			Perm	Predecessor		SUPPAE.QVAL
	ADAE	PRDGIVE1	Product Given 1		C	1		Perm	Predecessor	NYO	SUPPAE.QVAL
	ADAE	PRDGIVE2	Product Given 2		C	1		Perm	Predecessor	NYO	*** MODIFY:
	ADAE	ANL01FL	Analysis Flag 01 In Trial		C	2		Cond	Derived	Y	
	ADAE	ANL01REA	Analysis Flag 01 Reason		C	200		Perm	Derived		
 Is a tedious and 	darro	nrone ic	Enalysis Flag 02 On Treatment		C	2		Cond	Derived	Y	
- 15 a teulous all	u enoi	prone je	alysis Flag 02 Reason		C	200		Perm	Derived		
	ADAE	TRIEMPL	Treatment Emergent Analysis Flag		C	2		Cond	Derived	Y	
	ADAE	AEBODSYS	Body System or Organ Class		C	200		Req	Predecessor	MEDDRA	AE.AEBODSYS
	ADAE	AEBDSYCD	Body System or Organ Class Code		N	8		Perm	Predecessor	MEDDRAN	AE.AE8DSYCD
March of the second	ADAE	AESOC	Primary System Organ Class	- 1	C	200		Cond	Predecessor	MEDDRA	AE.AESOC
 IVIOST OF THE COL 	ntents	are dete	ermined by the de	sian. th	erapv	are	a. and	Perm	Predecessor	MEDDRAN	AE.AESOCCD
		AEHLGT		- 3 / -	- <u>N</u> - 1. J			Perm Cond	Predecessor Predecessor	MEDDRAN	AE.AEPTCD AE.AEHLGT
clinical project	ADAE	AEHLGTCD	High Level Group Term High Level Group Term Code		U NI	200			Predecessor	MEDDRAN	AE.AEHLGTCD
	ADAE	AEHLT	High Level Term		C	200		Cond	Predecessor	MEDDRA	AE.AEHLT
	ADAE	AEHLTCD	High Level Term Code		L.	200		Perm	Predecessor	MEDDRAN	AE.AEHLTCD
	ADAE	AEHLTCD	Lowest Level Term		C	200		Cond	Predecessor	MEDDRAN	AE.AELLT
	ADAE	AELLTCD	Lowest Level Term Code		N	200		Perm	Predecessor	MEDDRAN	AE.AELLTCD
	ADAE	DICTVER	Dictionary Version		C	200		Req	Predecessor	medunan	SUPPAE.QVAL
	ADAE	AEACN1	Action Taken with Study Treatment 1		C	40		Perm	Predecessor	ACN	SUPPAE.QVAL
	ADAE	AEACN2	Action Take with Study Treatment 2		C	40		Perm	Predecessor	ACN	SUPPAE.QVAL
	ADAE	AEREL1	Causality to Trial Product 1		C	40		Perm	Predecessor		SUPPAE.QVAL
	ADAE	AEREL2	Causality to Trial Product 2		C	40		Perm	Predecessor		SUPPAE.QVAL
	ADAE	AEACN	Action Taken with Study Treatment		c	40		Perm	Predecessor	ACN	AE.AEACN
	ADAE	AEREL	Causality		c	80		Perm	Predecessor		AE.AEREL
	ADAE	AETECH1	AE Related to Technical Complaint 1		C	2		Perm	Predecessor	NYO	SUPPAE.QVAL
	ADAE	AETECH2	AE Related to Technical Complaint 2		C	2		Perm	Predecessor	NYO	SUPPAE.QVAL
DISC	ADAE	CQ01NAM	Customized Query 01 Name (Gastro)		C	200		Cond	Assigned		10
			Customized Query 02 Name (Galbladde						1.	-	

Creating analysis metadata using ML Step 1: Train a machine learning model

Creating analysis metadata using ML Step 2: Use the machine learning model

Details of the ML algorithm

Inside the belly of Supervised learning with RKNN-FS

- Supervised learning: We know what we are looking for
- Random K Nearest Neighbors (RKNN)
 - KNN: Distance by similarity in features
 - Random choice of features
 - Ensemble model

- Feature Selection (FS):
 - Check what features gives best forecasts
 - Iteratively discard features that seem redundant
 - Better generalization in theory and better results in practice
 - Better insights

14

Evaluating performance

- Confidence is key!
- Tested against complete studies
 - Confidence of correct classifications
- Cross validation:
 - Train on 80% data, test on 20%
 - 5 Rounds
 - Unbiased estimate
- Threshold: 80% confidence

include	tables
1	ADSL
0,96133333	ADAE
0,95966667	ADEC
0,50333333	ADECEN
0,94266667	ADEG
0,485	ADHYPOEN
0,99966667	ADLB
0,94333333	ADPC
0,60866667	ADPDC
0,60866667	ADPDP
0,993	ADPE
0,763	ADPP
0,004	ADPROF
0,08366667	ADQS
0,06533333	ADRESP
0,04833333	ADSMPGEN
1	ADVS
0	ADVSEN
0.062	ADADJ
Parformanca	

- Performance = $\frac{1}{5} \sum_{i=1}^{5}$ Performance;

Workload spared

- Classifications with high confidence (above 80%):
 - ~25 ADaM datasets out of 38
 - ~3128 variables/columns out of 3479
 - Much better than expected!

- Errors?
 - 98% of datasets with high confidence are correct
 - 0.6 datasets per study are incorrect
 - 97% of variables with high confidence are correct
 - 123 variables per study are incorrect
 - Handled by project-responsible programmer

Results and usability

How much gold did we extract so far?

~80% of analysis data description can be

correctly predicted

Much less manual work

on this task

Going forward – spending the gold

cdisc

- Build and deploy a user application
- Interactive tool to build the ADaM-definition
 - Upload study description (PMD)

- High confidence predictions automatically defined
- ADaM datasets and variables with low confidence are presented
 - Programmer decides when the confidence is low

19

Going forward – purifying the gold

- Examine an **adaptive recommender system**
 - Recommend tables and columns that have not been defined in ADaM
 - Learns iteratively from the choices the programmers make

ANALYTIC

Potentially even more automation

Customers Who Bought This Item Also Bought

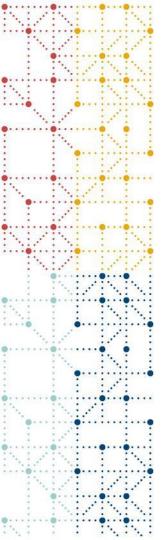
<

Predictive Analytics For Dummies > Anasse Bari Anasse Bari Paperback \$17.72 **/ Prime**

Predictive Analytics: The Power to Predict Who... Fric Siegel 229 #1 Best Seller (in Econometrics

Hardcover \$16.88 *Prime*

Quantifying the User Experience: Practical... > Jeff Sauro


\$40.63 *Prime*

Data Driven Marketing For Dummies > David SemmeIroth Paperback \$20.49 **/Prime**

Conclusion

Learnings & conclusions

- We can use ML for predicting new ADaM trials definitions using supervised learning trained on previous clinical metadata
- RKNN-FS seems to be a good performing algorithm for when we have few data to train on
 - RKNN-FS can predict approximately 80% of ADaM datasets including variables correctly and with high confidence
- Tedious and repetitive ADaM definitions that can be automated → Trial programmer can focus on non-standardized items
- In the future we are looking into building an app using the ML algorithm to forecast ADaM definitions for new trials
 - · Examining the possibility to build an adaptive recommender system

Thank You!

Questions and comments are welcome!

Thomas Rye Olsen, <u>vh769@alumni.ku.dk</u> Henning P. Föh, <u>hpf@novonordisk.com</u>

