

Balancing quality and efficiency - a Novo Nordisk submission example

Presented by Adrian Czaban, Statistical Programming Specialist, Biostatistics 2, Novo Nordisk

Meet the Speaker

Adrian Czaban

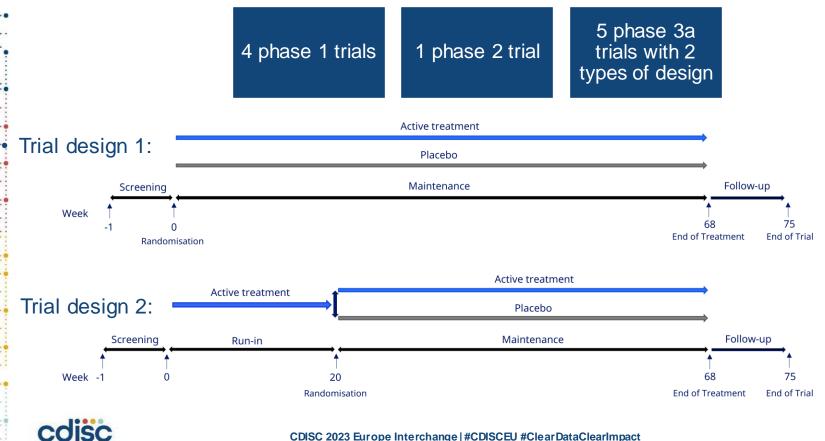
Title: Statistical Programming Specialist/International Lead Programmer Organization: Biostatistics 2, Novo Nordisk

- Started programming career in 2015
- Happy to work on new things and try out new solutions
- Lives with wife and 2 daughters in Copenhagen area

Disclaimer and Disclosures

• The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the official policy or position of CDISC.

• The author has no real or apparent conflicts of interest to report.



Agenda

- 1. Introduction to the project
- 2. Programming setup
- 3. Opportunities and challenges
- 4. Outcome

Introduction to the project and deliverables

Large project with the goal of submitting for a NDA in all major markets

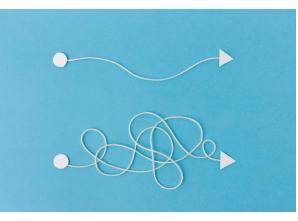
CDISC 2023 Europe Interchange | #CDISCEU #ClearDataClearImpact

Contents of the submission package

• For each trial and summaries, we planned to include the following:

• ADRG

- define.xml with Analysis Results Metadata (ARM)
- ADaM datasets
- All programs creating ADaM datasets and all macros used
- All metadata datasets along with their programs, apart from programming plan specification
- A subset of output programs where we have defined the ARM. This was split into programs creating the final output as well as programs making the statistical analysis
- BIMO



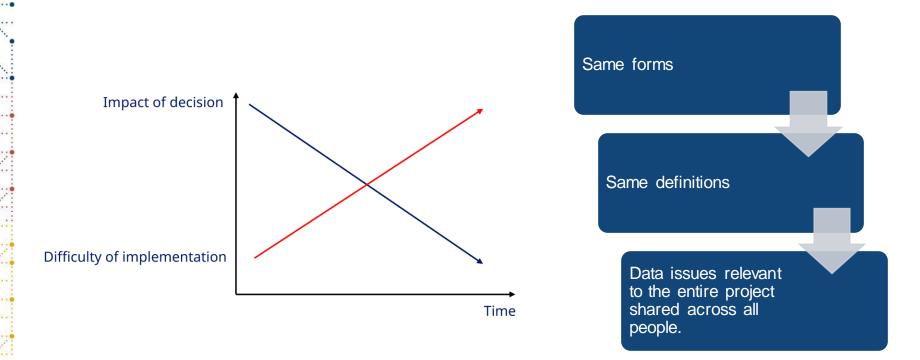
What would we like to achieve?

Programs that are "submission ready": easy to read and understand, and can be easily executed by FDA if required. Consistent both internally and across the project.

COISC

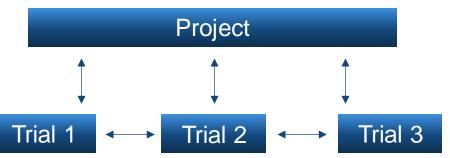
ADaM datasets, define.xml and and ADRG deliverables conforming with CDISC requirements and in tight agreement with each other. Make the review process as smooth as possible, by keeping things simple and giving reviewers the tools to find anwsers themselves.

What can we do to be more efficient when working in our trials – main focus points


Think in terms of the submission package as a whole, and not a collection of individual trials Re-use as much of code as possible across the project – with finding a balance between copy-paste and macro usage

Don't ask multiple people to create the same thing Avoid making the same changes in multiple places Keep the terminology and methods consistent across the whole project

Programming setup


Aligning already on the CRF design stage

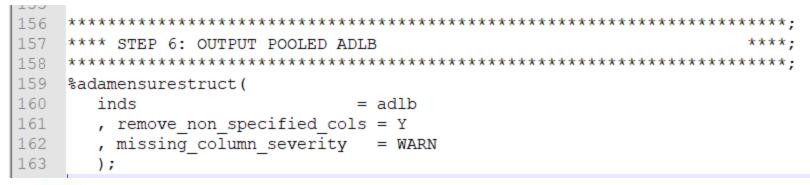
Alignment and ease of combining the trials

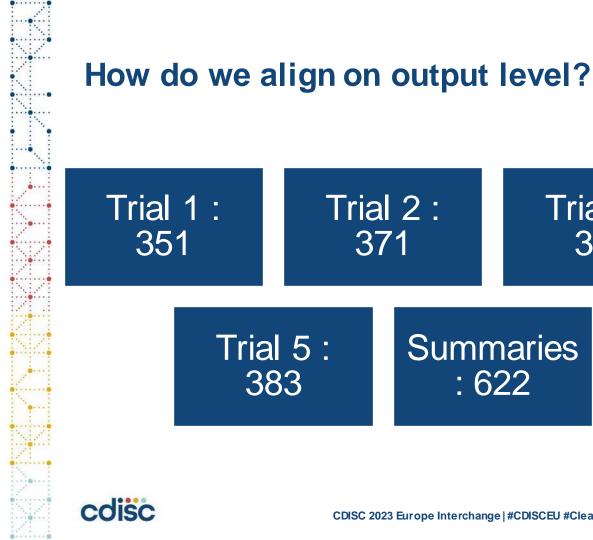
- All ADaM and output programs first created for Trial nr 1
- All of the programmers assigned their own ADaM programs, that are shared in a common project space
- Once Trial 1 programs have been created, programmers have moved out into their respective trials
- Similarly, output programs have been designed to work across all trials and maintained in the project space

How do we keep a common dataset content?

Project data content sheet, ensuring the same content definitions are used across all trials

include_in_Trial1	include_in_Trial2	include_in_Trial3	include_in_Trial4	include_in_Trial5	include_in_pooled	Table	Column	Label	
					_database				
_		_		_		_			
· · · · · · · · · · · · · · · · · · ·		•	· · · · · · · · · · · · · · · · · · ·	•	•	, , ,	•		
Y	Y	Y	Y	Y	Y	ADSL	ARMCD	Planned Arm Code	
Υ	Y	Y	Y	Y	Y	ADSL	ACTARM	Description of Actual Arm	
Υ	Y	Y	Y	Y	Y	ADSL	ACTARMCD	Actual Arm Code	
Y	Ν	Y	Y	N	N	ADSL	ACTARMN	Numeric version of Actual Arm (N)	
Ν	Y	Ν	Ν	N	Y	ADSL	ACTARMN	Numeric version of Actual Arm (N)	
Y	Y	Y	Y	Y	Y	ADSL	FASFL	Full Analysis Set Population Flag	
Y	Y	Y	Y	Y	Y	ADSL	FASREA	Reason for Exclusion from FAS	
Y	Y	Y	Y	Y	Y	ADSL	SAFFL	Safety Population Flag	
Y	Y	Y	Y	Y	Y	ADSL	SAFREA	Reason for Exclusion from SAF	
Υ	Y	Y	Y	Y	Y	ADSL	PPROTFL	Per-Protocol Population Flag	


ē	algorithm	algorithm_Trial1	algorithm_Trial2	algorithm_Trial3	algorithm_Trial4	algorithm_Trial5	algorithm_pool
	•	*	~	*	•	•	л
۷	When ANL04FL eq Y				When ANL04FL eq Y		When ANL04FL eq Y



Thinking of project instead of trials – pooled database developed alongside other tasks

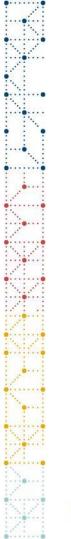
- 2 Description: Development of Laboratory Assessments (ADLB) dataset of 7 trials.

<Stack datasets> <Derive pool-specific variables>

Summaries

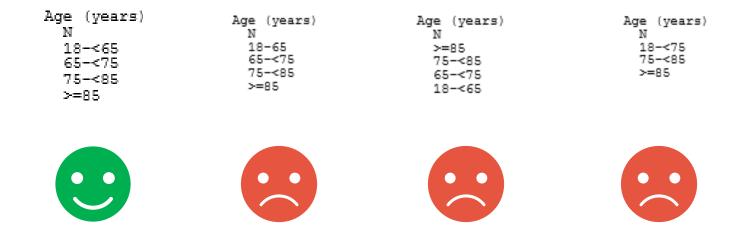
: 622

Trial 3 :


315

Trial 2:

371


Trial 4 :

322

cdisc

What could go wrong?

Strict control of codelists on the project level

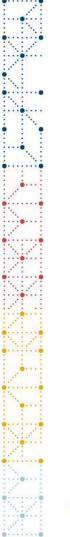
CODE

Master file:

include	in include in						
_trial_1	_trial_2	codelist	T,	value	Ψ.	ord 🍸	descrpt
Y	Y	agegrp1skl		N		5	N
Y	Y	agegrp1skl		18-<65		10	18-<65
Y	Y	agegrp1skl		65-<75		20	65-<75
Y	Y	agegrp1skl		75-<85		30	75-<85
Y	Y	agegrp1skl		>=85		40	>=85

DECODE

Metadata:

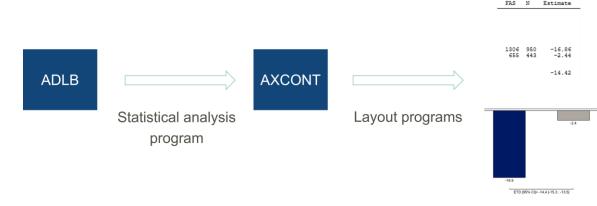

@ CODELIST	0	CODE	ORDER	0	DECODE
agegrp1skl	N		5	Ν	
agegrp1skl	18-<65		10	18-<65	
agegrp1skl	65-<75		20	65-<75	
agegrp1skl	75-<85		30	75-<85	
agegrp1skl	>=85		40	>=85	

Output:

cdisc

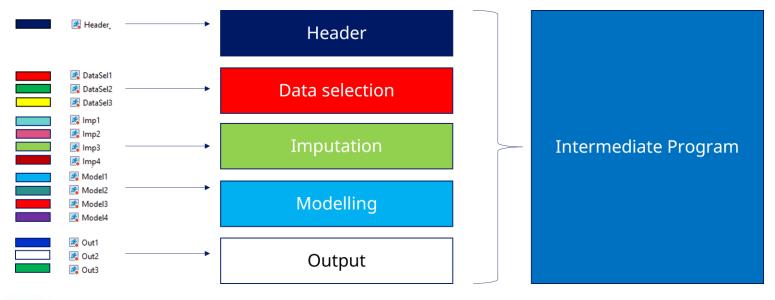
Age	(ye	ars)
Ν		
18	3-<6	5
65	5-<7	5
75	5-<8	5
>=	=85	

CODELICT


Usage of macros

Previous feedback on too many/too complicated macro programs

Statistical analysis without macros – 'AX programs' setup

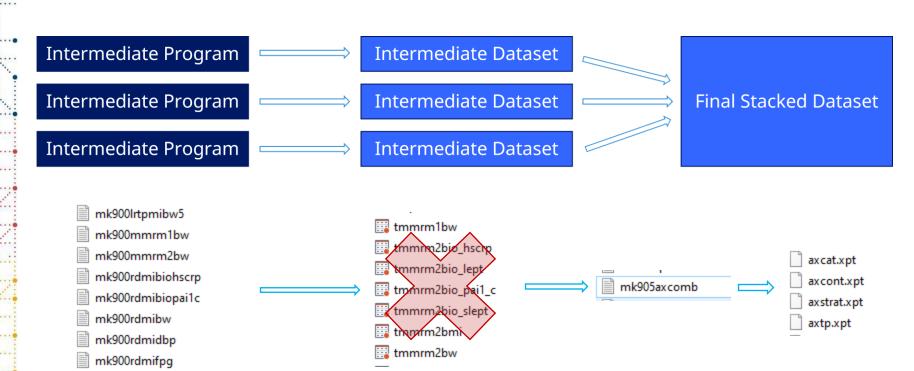

- Programs making statistical analyses are some of the most complex to review and understand.
- However, there is a danger of creating complex macro programs which are hard to debug and take a very long time to execute.
- Introducing an intermediate step and separating the program making the analyses from the one generating the output has many benefits

CDISC 2023 Europe Interchange | #CDISCEU #ClearDataClearImpact

Generating programs: 1 analysis – 1 program approach

All AX programs should be self-contained and submission-ready
There is a need to generate those programs in a simple and automated way
Solution – building blocks

Two levels of control:


• Which blocks to use

			He	ader			Data	selection			Imp	utation			Mod	delling			Ou	utput	
			Hea	aderX			Dat	taSelX			Ir	прХ			Mo	delX			C	utX	
Model/imputation type	Program part-name	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL 4	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL 4	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL 4	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL 4	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL 4
ANCOVA - RD-MI	rdmi	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
LR - RD-MI	Irrdmi	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2
ANCOVA - J2R-MI	j2rmi	1	1	1	1	1	1	1	1	2	2	2	2	1	1	1	1	1	1	1	1
LR - J2R-MI	lrj2rmi	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2
ANCOVA - S1-SI	s1	1	1	1	1	1	1	1	1	3	3	3	3	3	3	3	3	1	1	1	1
LR - S1-SI	lrs1	1	1	1	1	1	1	1	1	3	3	3	3	4	4	4	4	2	2	2	2
ANCOVA - S2-SI	s2	1	1	1	1	1	1	1	1	3	3	3	3	3	3	3	3	1	1	1	1
LR - S2-SI	lrs2	1	1	1	1	1	1	1	1	3	3	3	3	4	4	4	4	2	2	2	2
ANCOVA - TP-MI	tpmi	1	1	1	1	1	1	1	1	1	1	1	1	5	5	5	5	3	3	3	3
LR - TP-MI	Irtpmi	1	1	1	1	1	1	1	1	1	1	1	1	6	6	6	6	4	4	4	4
MMRM1	mmrm1	1	1	1	1	1	1	1	1	NA	NA	NA	NA	7	7	7	7	1	1	1	1
LR - MMRM1	lrmmrm1	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	4	2	2	2	2
MMRM2	mmrm2	1	1	1	1	1	1	1	1	NA	NA	NA	NA	7	7	7	7	1	1	1	1
LR - MMRM2	Irmmrm2	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	4	2	2	2	2
LR - NR	Imr	1	1	1	1	1	1	1	1	5	5	5	5	4	4	4	4	2	2	2	2
LR - RD-MI - CO	Irrdmico		1				2				6				8				5		
LR - MMRM2 - CO	lrmmrm2co		1				2				7				9				5		

• Make slight changes to individual blocks

model	estimand	param1	param2	dataset1	dataset2	chgtype1	chgtype2	impfactors
\$50. 👻	\$30. 👻	\$200. 👻	\$200. 👻	\$9. 👻	\$ 9. 👻	\$12. 👻	\$12. 👻	\$50. 👻
ANCOVA - RD-MI	Treatment policy	Body Weight (kg)		ADVS		PCHG		SEX BMIG3BL STRAT1V STRAT2V
LR - RD-MI	Treatment policy	Body Weight (kg)		ADVS		PCHG		SEX BMIG3BL STRAT1V STRAT2V
LR - RD-MI	Treatment policy	Body Weight (kg)		ADVS		PCHG		SEX BMIG3BL STRAT1V STRAT2V
LR - RD-MI	Treatment policy	Body Weight (kg)		ADVS		PCHG		SEX BMIG3BL STRAT1V STRAT2V
ANCOVA - RD-MI	Treatment policy	Waist Circumference (cm)		ADVS		CHG		SEX BMIG3BL STRAT1V STRAT2V
ANCOVA - RD-MI	Treatment policy	Body Weight (kg)		ADVS		PCHG		SEX BMIG3BL STRAT1V STRAT2V
ANCOVA - RD-MI	Treatment policy	HbA1c (%)		ADLB		CHG		SEX BMIG3BL STRAT1V STRAT2V
ANCOVA - RD-MI	Treatment policy	HbA1c (mmol/mol)		ADLB		CHG		SEX BMIG3BL STRAT1V STRAT2V

mk900rdmifpgsi

cdisc

Define.xml presentation

Data References (incl. Selection Criteria)	ADVS [FASFL = "Y" and ANL01FL = "Y" and ANELFL = "Y" and PARAM IN ("Body Fat Mass (kg)", "Body Fat Percentage (%)", "Lean Body Mass (kg)", "Lean Body Mass in % (%)", "Visceral Fat Mass (kg)", "Visceral Fat Mass in % (%)")]
	AXCONT [ESTIMAND = "TREATMENT POLICY" and <u>POPVAR</u> = "DXAFL" and <u>MODEL</u> = "ANCOVA - J2R-MI" and <u>PARAM</u> IN ("Body Fat Mass (kg)", "Body Fat Percentage (%)", "Lean Body Mass (kg)", "Lean Body Mass in % (%)", "Visceral Fat Mass (kg)", "Visceral Fat Mass in % (%)") and <u>CHGTYPE</u> = "CHG"] Results presented in table are selected from the AX data set. Results in the data set AX are based on imputation/modelling of data in the AD data set.

Programming Statements	[SAS version 9.4] Imputation of missing data and modelling/estimation was done using mk9xxx.txt referenced below. Estimates were added to the AXCONT dat set, wherefrom estimates were selected when presenting estimates in the table using tstatancova.txt.
	Imputation of missing AVAL was done using FROC MI. Imputation was based on available values within imputation group where each combination of treatment arm and treatment status (on-/off-drug status) at landmark visit defined an imputation group. Last available observation on treatment is denoted LAO_CT.
	<pre>proc mi data = {data with missing results} out = {output data set} nimputa= 1000; by TRTP {treatment status}; class SEX BNIG3B1 {LAO_OT time interval}; var SEX BNIG3B1 {LAO_OT time interval} {AVAL at baseline} LAO_OT AVAL; monotone regression {AVAL = SEX BNIG3B1 {LAO_OT time interval} {AVAL at baseline} LAO_OT); run;</pre>
	Modelling of change and consecutive estimation was done using FROC MIXED.
	<pre>proc mixed data = {data with missing replaced by imputed results}; by PARAM_IMEUTATION_; class TRTP; model CRG = TRTP (AVAL at baseline); lsmeans TRTP/diff=control('Placebo') obsmargins at means cl; run;</pre>
	Results presented in table:
	proc print (using selection as specified in Data References); var MGROUP CGROUP NOBSPOP NOBST EST CFB CONTR CONTRLL CONTRUL PROBSUP; run;
	mk900j2rmidxabw.txt @
	mk900J2rmidxabwkg_txt &
	mk900j2rmidxalbm.txt &
	mk900j2rmidxalbmkg.txt @ mk900j2rmidxatfm.txt @
	mk900j2rmidxat/mkq.txt @
	mk200)zmloadminguat #
	mksozy jezimiska vimska tra e e e e e e e e e e e e e e e e e e e
	tstatancova.txt @

cdisc

Combined ADRG and define.xml templates

Review of define.xml and ADRG is part of developing and reviewing the ADaM program

One template project document to be used for all trials

CDISC 2023 Europe Interchange | #CDISCEU #ClearDataClearImpact

Integrated summaries (ISS, ISE and pro questionnaires)

Subgroup analysis made very easy due to a solid integrated database foundation

Most of the programs are re-used from trial level, both the output and the statistical analysis

Opportunities and challenges

Increased maintenance and rigidness – single updates required a lengthy process Different definitions for Trial nr. 4 variables forced many changes in both ADaM and TFL

Quality of TFL programming could be improved 3 separate analysis pools, each with their own set of variables: phase3a, dose escalation, non-diabetic

Keeping everyone in the loop was critical

Adding new trial to the existing pools required general updates – loosing backwards compatibility

PMDA submission requirements different from FDA

Different requrements for the PMDA submission

FDA:

Table 1-2 Versions of standards and dictionaries used

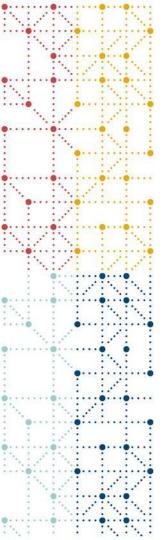
Standard or Dictionary	Version(s) Used
SDTM	SDTM v1.4
	SDTM IG v3.2.
ADaM	ADaM Model Document 2.1
	ADaM Implementation Guide v1.1
	ADaM Structure for Occurrence Data (OCCDS) 1.0
Controlled Terminology	ADaM 2018-12-21
Data Definitions	define.xml v2.0

Table 1-2 Versions of standards and dictionaries used

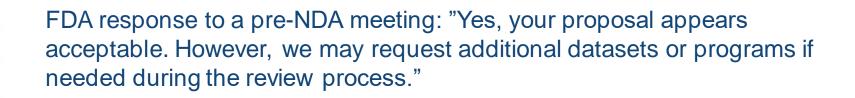
Standard or Dictionary	Version(s) Used
SDTM	SDTM v1.4
	SDTM IG v3.2.
ADaM	ADaM Model Document 2.1
	ADaM Implementation Guide v1.0
	ADaM Structure for Occurrence Data (OCCDS) 1.0
Controlled Terminology	ADaM 2018-12-21
Data Definitions	define.xml v2.0

CDISC 2023 Europe Interchange | #CDISCEU #ClearDataClearImpact

Things that were appreciated:


A large number of high quality, submission ready programs have been created

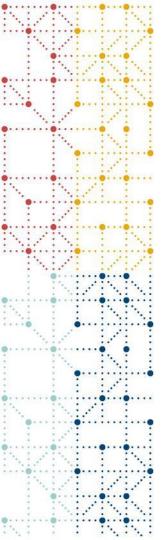
Repetitive programming has been largely eliminated


Making subgroups or slight modifications to programs and reviewing them was quite easy, consistent and transparent

Analysis Results Metadata was describing all programs used to create an individual output, making life easy for the reviewers We have been asked multiple times during the Q&A to provide programs we've created in order to anwser the reviewer's questions. Having all our programs at a high 'submissionready' level made this much easier

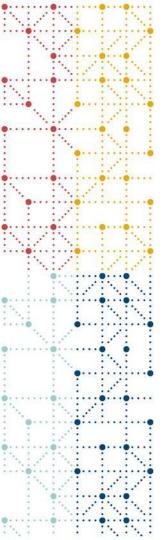
Outcome

Submission made without any technical issues


No questions to Biostatistics deliverables in the Q&A phase – neither in the FDA nor the PMDA side!

CDISC 2023 Europe Interchange | #CDISCEU #ClearDataClearImpact

The Project was a team effort of many skilled Programmers and Statisticians – thank you all!



Thank You!

CDISC 2023 Europe Interchange | #CDISCEU #ClearDataClearImpact

Questions?

CDISC 2023 Europe Interchange | #CDISCEU #Clear DataClearImpact