Architecture Principles

Description of the Deliverable for the Development Phase

The architecture principles aim to help implementers understand how to create conformant
solution architectures through the implementation of the DDF Study Definition Reference
Architecture (RA). They inform solution architects of the approach expected by the RA
stakeholders to ensure consistency across Study Definition implementations and to ensure
alignment with the business and technology objectives. Architecture principles define the
fundamental assumptions regarding the RA and aid in developing a framework for decision making
by solution architects implementing the RA.

Summary of work to be performed during scoping

A framework for the architecture principles was developed during the scoping period.

REST Architecture Principles

The Digital Data Flow (DDF) Unified Study Definition Model (USDM) Reference Architecture (RA)
has an Application Programming Interface (APl) component developed using the REST
(REpresentational State Transfer) architecture. REST defines an architectural style that includes
design constraints used to specify how the architecture of a system like the DDF USDM software
should function. The Representational element of REST means that the API represents the systems
underlying resources, or data objects, using different media types that can be requested by clients.
For example, a client may request a study objective endpoint resource as JSON or XML. A resource
is an object with a type, associated data, relationships to other resources, methods that operate
on it, and is the fundamental concept in a REST API. The State Transfer element of REST means
that the client stores the state in it’s own application/session. When a client requests a resource
from the server using the API, the client sends the relevant state information to the server so that
the server has the context needed to provide the correct response.

REST Architecture Principles

e REST implements a client server architectural style that creates a layered system for which
REST provides the interface. REST supports the separation of concerns principle by requiring
that clients use the API to access the application and data layers of the DDF USDM
architecture. Clients cannot see beyond the provided interface. This enables the other layers to
evolve independently from the interface, simplifies each of the layers, and can improve
scalability. It also simplifies access to USDM content and allows the widest range of clients to
consume the content and services. Participants in loosely coupled distributed applications,
such as those developed using the DDF USDM and its RESTful API, are free to work with the
content they receive in any way they wish.

e REST exposes data as objects, called resources, and typically uses the HTTP verbs for actions on
those objects. A resource provides the source of specific information and can include a global
permanent identifier such as can be provided by an HTTP Uniform Resource Identifier (URI). A
URI uniquely identifies a resource, and makes it addressable, or capable of being manipulated
using a protocol such as HTTP. Endpoints are URIs or Uniform Resource Locators (URLs).



e REST requires a standard interface, such as that provided by HTTP, to support the principle of
generality. The DDF USDM REST API anticipates HTTPS as the primary protocol for making
requests to the server and uses HTTP verbs to convey actions. HTTP uses a relatively small
number of verbs with well-defined and widely accepted semantics. The interface provides the
means to exchange representations of resources. The HTTP methods used by the APl may
include:

e GET retrieves a representation of the resource at the specified URI, and the body of the
response contains the resource details.

e POST creates a new resource at the specified URI. The body of the request message
provides the details of the new resource. Note that POST can also be used to trigger
operations that don't create new resources.

e PUT either creates or replaces the resource at the specified URI. The body of the
request message specifies the resource to be created or updated.

e PATCH performs a partial update of a resource. The request body specifies the set of
changes to apply to the resource.

e DELETE removes the resource at the specified URI.

® REST servers should be stateless to support the architecture principles of visibility, reliability,
and scalability. Stateless servers require that each request from client to server contain the
information necessary to understand and complete the request without requiring that state
information be stored on the server.

e REST responses should be cacheable to improve performance.

e REST supports content negotiation such that clients can request specific content and media
types.

® REST uses hypermedia as the engine of application state (HATEOAS) where responses include
URLs relevant to the context of the requested resource. A hypermedia-driven system provides
information to navigate the system's REST interfaces dynamically by including hypermedia links
with the responses.

Technology Independence

Any client should be able to call the DDF USDM API, regardless of the specific APl implementation
as long as it conforms to the specification. APIs should de-couple source from target, reducing de-
pendence on specific technologies and thus reducing the cost of change. The APl uses standard
protocols, such as HTTP, and a mechanism for the client and the server to agree on the data ex-
change media type. API clients specify their preferred media types in the HTTP Accept header. As
long as clients and servers adhere to the API specification and data model, implementations that
pass the conformance tests can be developed using a wide-range of technologies, supporting the
principle of technology independence. Application independence from the underlying technology
allows software to be developed and updated independently without being subject to continual
obsolescence and vendor dependence.

Interoperability

The DDF USDM software conforms to defined standards to promote interoperability for data, ap-
plications, and technology. Standards improve interoperability and help to ensure that multiple
vendors implement products based on the standards, and facilitates supply chain integration. Stan-
dards help ensure consistency reducing the cost to produce, update, and manage systems thereby
protecting existing IT investments and maximizing return on investment.



Data Standards and Controlled Vocabularies

The use of existing industry data standards and controlled vocabularies improves interoperability
and increases the availability of supporting software tools. The use of data standards ensures data
is defined consistently across organizations, and that the definitions are available and understand-
able to all users. The use of data standards and controlled terminologies facilitates the data ex-
change, simplifies systems integration, and enables data aggregations to support analytics.

Contract-first Design

The OpenAPI Initiative was created by an industry consortium to standardize REST API descriptions
across vendors. OpenAPl promotes a contract-first approach, rather than an implementation-first
approach. Contract-first means you design the API contract by defining the interface in a specifica-
tion first and then write code that implements the contract.

Filter and Paginate Data

Exposing a collection of resources through a single URI can lead to applications fetching large
amounts of data when only a subset of the information is required. This impacts performance,
causes client usability problems, wastes network bandwidth, wastes server processing power, and
is highly inefficient. The APl allows the client to pass a filter in the query string of the URI that fil-
ters the information requested. The server application parses and handles the filter or page pa-
rameter returning the filtered results to the client

Discoverability and Follow-your-nose

With HATEOAS, a client interacts with a DDF USDM API whose application servers provide informa-
tion dynamically through hypermedia. A DDF USDM REST client needs little to no prior knowledge
about how to interact with the API or server beyond a basic understanding of hypermedia. The
client makes an HTTP request of the API through a simple URL and all subsequent requests are dis-
covered inside the responses to each request. The media types used for these representations,
and the link relations they may contain, are standardized. The client transitions through applica-
tion states by selecting from the links within the resource representation or by manipulating the
resource representation in other ways afforded by its media type. In this way, hypermedia drives
the REST APl interaction, and not out-of-band information. The server should be descriptive
enough to instruct the client how to use the API via hypertext only.

Governance

An important aspect of governance is API versioning. Careful versioning strategy allows consumers
enough time to update their software to adopt to new APl versions. With that, an industry stan-
dard of at least two versions of backward compatibility is recommended. API should be versioned
numerically using single digit increments, i.e., 1, 2, etc. Each APl version may have multiple re-
leases. A new API version should be considered when significant functionalities are being added or
drastic changes to response structure are being introduced. APl version should be clear in either a
path parameter (e.g., /vl/endpoint) and/or the response structure. API version as query parame-
ter may be less ideal as stated in RESTful principles above a standard interface is preferred. Careful



consideration should be given to supporting multiple APl versions simultaneously, as this certainly
presents operational challenges.

Specification for each API release should be carefully reviewed for consistency including, but not
limited to style, meaningful reuse of repeatable components, and examples.



