Use of SDTM and ADaM in the RECOVERY trial

Dr Will Stevens, PhD

Senior Programmer/Analyst

Clinical Trial Service Unit and Epidemiological Studies Unit

University of Oxford

will.stevens@ndph.ox.ac.uk

My background

- Software development in industry and academia for 25 years.
- Clinical trials software development for 14 years.
- Software to support SDTM, ADaM, define.xml for the past 9 years.
- Large simple clinical trials large number of participants, small amount of data per participant, hard outcomes.

RECOVERY trial

- Pls: Prof. Martin Landray and Prof. Peter Horby.
- Randomised controlled trail of treatments for COVID-19.
- Hospitalised COVID-19 patients with consent are randomly allocated to one of a number of possible treatments. 20 treatments multifactorial.
- First participant randomised on 19th March 2020.
- Over 47000 people randomised to date.
- RECOVERY showed that dexamethasone (June 2020), tocilizumab (Feb 2021), Regeneron's monoclonal antibody combination (June 2021), and baricitinib (March 2022) reduce mortality.
- Aspirin, Azithromycin, Colchicine, Convalescent Plasma, Hydroxychloroquine and Lopinavir-Ritonavir have no effect.

RECOVERY trial

- Data mapped to SDTM and ADaM.
- Took part in task force for the Interim User Guide for COVID-19 published on 20 April 2020. RECOVERY CRFs and Protocol were shared with the team who produced this.

Recruitment over time

Time to randomise

Data sources

- Data comes from web-based CRFs, NHS Digital, and other electronic sources.
- NHS Digital and other electronic sources are pre-processed by data engineer on receipt by RECOVERY to extract the relevant data – major piece of work.
- Data quality and completeness from each sources varies.
- Different pieces of information about the same outcomes from each source.
- RECOVERY main outcomes are death within 28 days of randomisation, time to discharge from hospital, use of ventilation, use of renal replacement therapy.

Data sources - examples

- Personal Demographics Service first indicator that somebody has died, deaths may appear in this dataset very soon after person dies.
 Death date may be corrected later on (quality indicator for this).
- Civil registration death data data covering everybody who dies in England and Wales. Also includes cause of death (ICD10). Coverage is incomplete for those who died in the month prior to provision date.
- CRF completed by investigator in hospital. Only captures in-hospital deaths and therefore misses about 6% of all deaths. Also includes high-level cause of death classification.
- 10 possible sources for death date in total.

Data sources – description and definitions

- High level document (available on the trial website) describes all of the data sources used, and informally defines how outcomes are defined using the data sources.
- More detailed definition document (an appendix to SDRG and ADRG) describes how data from different sources maps to SDTM, and how outcomes are defined in terms of the SDTM data.
- Annotated CRF.

Example – death data

6.1 All-cause mortality

The primary outcome is all-cause mortality at 28 days after randomisation. All-cause mortality will also be assessed at 6 months and other later time points.

6.1.1 Sources

Information on death may come from the following sources:

- FU eCRF (for deaths within first 28 days after randomisation)
- PDS (for participants in England)
- PDS Wales ((or participants in Wales)
- SUSAPC (for participants in England)
- SMR01 (for participants in Scotland)
- PEDW (for participants in Wales)
- ONS mortality data (for participants in England and Wales)
- NRS mortality data (for participants in Scotland)

Example – death data

Outcomes										
	SAP(2.0) 5.1.1	Mortality (all-cause)	within 28 d	lays after ra	ndomisatio	on (i.e. if rar	ndomisatior	n = day 1, tł	
	SAP(2.0) 6.1.1.1	Cause-spe	cific morta	lity						
Relevant S	DTM and ADaM	datasets								
	DD (death details	s), DM (dem	M (demograpics)							
	ADCNDTH (all-ca	use mortalit	ty censorin	g data), AD	DTHTTE (al	l-cause mo	rtality time-	-to-event)		
	ADCNDCS (cause	-specific mo	ortality cen	soring data	a), ADDCST	TE (cause-sp	pecific mort	ality time-t	o-event)	
	Censoring rules a	re describe	d in the de	fine.xml do	ocumentatio	on for the c	ensoring da	tasets		
	<u>Time-to-event ta</u>	bles are stru	uctured ac	cording to	the ADaM 1	TE guidanc	e documen	<u>t</u>		

Data sources and SDTM mapping note	
A row is created in DD from	each of the following data sources. DDSPID identifies the data source.
INT04 Civil registration	Date of death: DDTESTCD='DTDTH', DDORRES = date of death. ICD10 code cause of death
INT03 PDS formal	Date of death: DDTESTCD='DTDTH', DDORRES = date of death, DDSPID='INT03', DDRESCA
INT12 NHSCR PDS	Date of death: DDTESTCD='DTDTH', DDORRES = date of death. ICD10 code cause of death
INT10 SMR01	Date of death: DDTESTCD='DTDTH', DDORRES = date of death, DDSPID='INT10'
INT14 PEDW	Date of death: DDTESTCD='DTDTH', DDORRES = date of death, DDSPID='INT14'
INT01 SUS+	Date of death: DDTESTCD='DTDTH', DDORRES = date of death, DDSPID='INT01'
CRF	Date of death: DDTESTCD='DTDTH', DDORRES = date of death. Cause of death: DDTESTCD
INT03 PDS informal	Date of death: DDTESTCD='DTDTH', DDORRES = date of death, DDSPID='INT03', DDRESCA
INT19 Welsh Demographic	ervice Date of death: DDTESTCD='DTDTH', DDORRES = date of death. DDSPID='INT19'
INT13 NHSCR death registry	Date of death: DDTESTCD='DTDTH', DDORRES = date of death. ICD10 code cause of death

Example – identifying and handling disagreement

- Some sources are extremely reliable and considered the gold standard for the data we use e.g. civil registration death data.
- But have a time lag, so more up-to-date data is needed: CRF, personal demographics service.
- All data sources can be assessed for accuracy against the gold standard source.
- Ranked in order of accuracy, and used preferentially in that order.
- Even the least reliable sources are better than no data.

Example – ventilation data

Outcome	es									
	SAP(2.0) 5.1.2.2 (component of)	Invasive mechanical ventilation within the 28 days on and after randomisation								
	SAP(2.0) 5.1.3.1 (component of)	Use of ventilation (ov	Use of ventilation (overall and by type)							
	SAP(2.0) 5.1.3.2 (component of)	Duration of invasive mechanical ventilation (time to successful cessation of invasive mechanical ventilation)								
Relevant	SDTM and ADaM datasets									
	PR (procedures)									
	ADPE (endpoints)									
	ADVENT (ventilation occurrence and	duration outcomes)								
	ADCNCES (censoring dates for cessa	tion of IMV), ADCESTTI	E (cessation of IMV tim	e-to-event)						
	Censoring rules are described in the	define.xml documentat	tion for the censoring o	datasets						
	Time-to-event tables are structured	according to the ADaM	TTE guidance docume	nt						

From ICU admission electronic datasets

Example – ventilation data

Outcome	definitions									
	From CRF, occurrence of IMV is base	d on: mech_vent='1' or	r ecmo='1' or imv_days	> 0. If imv_	_days > 0 tł	nen this is u	sed as the	duration. F	Reports of I	MV from C
	From SUS+, ventilation = 1, with a sta	art date within the 28 d	ay period counts as IM	V. Duration	n of IMV no	ot available	from SUS+			
	From SICSAG, if part of the admission	n interval overlaps the	28 day period, this cou	nts as IMV,	, and the n	umber of da	ays overlap	is the dura	ation.	
	From INT10 SMR01 and INT14 PEDW	V, <mark>i</mark> f the start date of th	e event falls in the 28 d	ay period,	this counts	as IMV, nu	imber of da	ays not ava	ilable from	these sour
	Consider rows in PR that represents	an IMV episode from I	NT09, INT17 or INT24:							
		PRSTRTPT and PRENR	TPT indicate whether tl	he days in t	he episode	should all b	be counted	at the beg	inning of th	e episode o
		The estimate of where	e abouts in the admissi	on the days	s on IMV sł	nould count	is modifie	d by the da	te of death	(from DM.
		The estimate of where	e abouts in the admissi	on the days	s on IMV sł	nould count	is also mo	dified by w	hether the	participant
		For each participant								
			For each date from da	y 1 to day 2	28					
				If the date	e is one of t	he days in a	an episode	in PR, then	set a flag ir	ndicating th
				If the date	e is in an ep	isode in PR,	, but not or	ne of the da	ays (i.e. the	days are a
				Set CONTR	RFL to 'Y' fo	r any date t	that has IN	T09FL='Y',	or has (INT	17FL='Y' or
				Set CONTR	RFL to 'N' fo	or any date	where the	re has been	i an earlier (changes fro
			All datas with CONTRE	I – V contri	ibutos to di	uration of I	MV for this	narticinan	+	

Completeness of follow-up data

- Calculated from CRFs and from electronic healthcare data sources.
- Completeness for primary and secondary outcomes > 99%
- Having both CRF and electronic healthcare data sources enables us to repeat analyses using only CRF data, or using only electronic healthcare data. Good agreement between the two.

Completeness of follow-up data

- Death : because there is a national death registry then reasonable expectation that if somebody dies, data about death will be available.
- Use of ventilation within 28 days after randomisation : because all randomised participants are inpatients in an NHS hospital, we can be reasonably sure that if we get data about their admission from an NHS data source, we would expect to see any ventilation use.
- More problematic for longer-term outcomes after discharge: if participant discharged, how do we know whether they have moved outside UK, or between nations in the UK? How do we know whether they received private care?

Challenges : Platform trials

- Platform trials : some comparisons ongoing while others are being analysed and published. Protocol continually changing. Version control is important.
- CDISC standards in platform trials : separate data package for each comparison, containing e.g. different Trial Design datasets for each comparison, slightly different versions of SDRG and ADRG. Annotated CRFs change over time as protocol changes.
- Data sharing limitations on what we are allowed to share from NHS digital. E.g. no absolute dates how will regulators handle this?

data

code, documentation.

Treatment 3

Challenges : Data sharing

- Data sharing limitations on what we are allowed to share from NHS digital. E.g. no absolute dates.
- Use SDTM –DY variable rather than date variable when exporting data.
- Not every SDTM date variable has a –DY variable, some non-standard variables need to be added.
- Many validation rules depend on dates. Two-step validation process used.

Current areas of work

- Template for standard description of data source attributes: what attributes do we need to know about? Geographical coverage, temporal coverage, expected max lag time between event occurrence and appearance in dataset. Summary of data entry methodology (+ reference to full data entry manual)
- Template for describing origin of data fields and SDTM mapping annotated CRF equivalent.
- Need to understand how to describe data sources in a way that will be acceptable to regulators

Future areas of work

- What properties could healthcare data sources have to make them better suited to clinical trials?
- Immutability always able to access data as it was at some point in time in the past.
- Standardisation

SDTM Data from several sources, occasionally inconsistent

Where to represent "best estimate of the truth"?:

SDTM was developed in the context of CRF-based trials, where the CRF data is regarded as the final, clean version of what happened to the participant. When there are multiple sources, which could disagree with each other, how should disagreement and resolution be represented?

An extra layer is needed : derived from the multi-source data in SDTM, but which models what happened to the participant. Could be another instance of SDTM domains, but representing consolidated, best-estimate data.

Alternatively, the multi-source data could be represented using another data standard, prior to SDTM mapping, and included in data packages and regulatory submissions in addition to SDTM and ADaM.

ADaM Analysis ready data