

Session 4, Track C: CDISC 360, Part II

Bhavin Busa Vita Data Sciences VP, Clinical Data Services & Operations

Mikkel Traun Novo Nordisk Principal Developer

Nicolas De Saint Jorre XClinical Product Owner - Data Manager

Jianhui Zhao AbbVie Associate Director

Prasanna Murugesan AstraZeneca

Stuart Malcolm Frontier Science (Scotland) Ltd Senior Programmer

6.

Q & A session

2. PoC for Study Design and Configuration using CDISC 360 Concept-based Standards – Mikkel and Nicolas

3. Automation of SDTM & ADaM Generation and Artifacts using CDISC 360 Enriched Metadata – Bhavin and Jimmy

4. Automation of TFL Generation using CDISC 360 Enriched Metadata – Bhavin, Prasanna & Stuart

5. Concluding Remarks and Next Steps – Bhavin and Mikkel

5 mins

10 mins

15 mins

Introduction, Future State, Process and

Mikkel Traun, *Novo Nordisk*Nicolas de Saint Jorre, *XClinical*

CDISC US Interchange, October 2020

Agenda

- General Introduction to Study Builder App & MDR
 - Demo
 - Define Design Select Build
 - List and interface study metadata
 - BC's for Activities and Assessment
 - Linked Graph Data Model
 - API for Sponsor Study MDR
 - Neo4j to SAS Interface

Key features in the Study Designer App

Library

Import definitions from external libraries.

Manage sponsor defined selections and definitions. **Define** Identifiers and a general set of trial summary parameters for the study

Design Study design parameters as well as defining study arms, elements, epochs and visits

Select Search and select concept-based standards and define schedule of activities and assessments

Build Generate study specification artefacts that support automation of study setup and execution

List

Extract study metadata in tabular format for down stream usage.

From within the App with export to multiple format as well as direct from SAS.

Import Concept Based Standards

- Currently the Concept Based Standards are imported as a combination of data from
 - Current CDISC Library
 - Supplemental Metadata

- This is done in Cypher program scripts loading data into the Neo4j based Study Metadata Library
- Each CT term is stored once and Neo4j enable version tracking over time

"https://library.cdisc.org/api/mdr/ct/packages"

```
// Load Scope of CT packages
CALL apoc.load.jsonParams("https://library.cdisc.org/api/mdr/ct/packages",{Authorization:
   "Basic Y2xxx", Accept: "application/json"}, null) YIELD value AS link
UNWIND link._links.packages AS package
WITH DISTINCT SPLIT(package.title, ' ')[0] AS model
MERGE (mdl:Model {name: model})
RETURN mdl.name;
```

Linked graph domain model for CDISC CT

Demo

Library – Import and manage sponsor standards

Define – Design – Select – Build

List and interface study metadata

How do you work with a 360 enabled Sponsor Study MDR

Study Designer App - Library

On the **Library** menu the user

- Create additional templates for Objectives and Endpoints
- Create instantiations of imported or sponsor defined templates
- Instances of Objectives and Endpoints include reference to dependent parameters

Linked graph domain model for Library

Study Designer App - Define

On the **Define** menu the user

- Enter the basic description of the trial like the study phase, title, registry identifiers
- Therapeutic Area of the study and CDISC TAUGs used
- Version of terminology standards
- Version of exchange standards

Linked graph domain model for Study Define

Study Designer App - Design

On the **Design** menu the user

- Make basic selection of trial design related trial summary parameters like Intervention Type, Intervention Model etc.
- Define the Trial Arms, Epochs, Elements and the Design matrix
- Define the visit schedule
- Define the planned interventions

Linked graph domain model for Study Design

Study Designer App - Select

CDISC360-2

On the **Select** menu the user

- Selects the concept based standards from the libraries that are to be used in the study
 - These can be based on templates that are instantiated in the local library
- Objectives and Endpoints
- Activities and Assessments
- Schedule of Activities and **Assessments**
- TFL metadata

Linked graph domain model for Study Select

Study Designer App - Build

On the **Build** menu the user can generate:

- Study data standards plan
- Protocol metadata report
 - To be copy paste into CPT
 - As XML to be imported into eCPT
 - As tables that can be exported
- Data collection specification
 - ODM-XML
 - Blank CRF, techCRF and aCRF
- Tabulation Specification
 - Define-XML specification
- Analysis Specification

Study Designer App – Select Activities & Assessments

On the **Select** menu the user

- Selects BC's in the form of Activities and Assessments
- Configure these in context of the study
- Schedule the Activities and Assessments in Study Design

A	Epoch		Screening	Treatment	Treatment	Treatment	Treatment	Treatment	Treatment	Treatment	Treatment	Treatment	Tre
Collected	Activity	Assessment	Visit 1	Visit 2	Visit 3	Visit 4	Visit 5	Visit 6	Visit 7	Visit 8	Visit 9	Visit 10	V
Assessments A	Randomisation	Randomisation Date	(X)	•	⊗	⊗	⊗	⊗	×	⊗	⊗	×	
Select Activity / Assessment Schedule of	Demography	Date of Birth	_	×	⊗	(X)	⊗	×	⊗	×	⊗	×	
	Vital signs	Systolic Blood Pressure	~	0	⊗	×	⊗	⊗	×	⊗	⊗	×	
Assessments Schedule SDTM Datasets		Diastolic Blood Pressure		Ø	⊗	⊗	×	⊗	×	×	⊗	×	
		Pulse	_	•	⊗	⊗	⊗	⊗	⊗	⊗	⊗	⊗	
Data Collection		Body Temperature	•	•	⊗	⊗	⊗	\otimes	⊗	\otimes	⊗	⊗	
	Glucose metabolism	Hemoglobin A1C/Hemoglobin		•	•	Ø	⊗	⊗	⊗	⊗	•	⊗	
Tables, Figures and		Glucose, Plasma	_	⊗	Ø	Ø	Ø	Ø	Ø	Ø	Ø	•	

Study Designer App - List

On the **List** menu the user can generate:

- Browse all study metadata in tabular form
- Export these into various file formats
- Will correspond to the SAS based interface to the Study Metadata Library enabling extract of study metadata into SAS datasets
- This include CDASH2SDTM and SDTM2ADaM Bindings

BC's for Activities and Assessment

Linked Graph Data Model

Linked graph domain model for Activities and Assessments The Concept Definition

The CDISC 360 Bindings from CDASH -> SDTM

Linked graph domain model for Schedule of Assessment

Sample Cypher Query Schedule of Assessments

	study_id	activity	assessment	visitnum	pa.order	pm.order
1	"CDISC360-2"	"Vital signs"	"Systolic Blood Pressure"	100	40	40
2	"CDISC360-2"	"Vital signs"	"Diastolic Blood Pressure"	100	40	41
3	"CDISC360-2"	"Vital signs"	"Pulse"	100	40	42
4	"CDISC360-2"	"Vital signs"	"Body Temperature"	100	40	43
5	"CDISC360-2"	"Vital signs"	"Systolic Blood Pressure"	200	40	40

API for Sponsor Study MDR

PoC implementation of API endpoints

API for Sponsor MDR managing the Study Metadata

This component diagram will be described in the CDISC 360 PoC Yellow-paper

Neo4j to SAS Interface

All metadata in Sponsor Study MDR Neo4j database can be access directly from SAS

Access Neo4j Sponsor Study MDR from SAS

- The Neo4j transactional HTTP endpoint allows you to execute Cypher statements
- Using SAS PROC LUA to easily interface with the Neo4j REST API from SAS
- Neo4j to SAS Interface manage SAS Dataset metadata

["FIRST TRIAL PROD DATE".

"FIRST TRIAL PROD DATE"1

ASSESSMENT	SRCSEQ	SRCLIB	SRCDSN	SRCVAR	SRCTYPE	ORIGIN	METHOD	CODELIST	TGTLIB
["BODY_WEIGHT", "HEIGHT", "BP_DIASTOLIC", "BODY_TEMPERATURE", "PULSE"]	1	CDASH	VS	SUBJID	text	Assigned	ALL.USUBJID		SDTM
["BODY_WEIGHT", "HEIGHT", "BP_DIASTOLIC", "BODY_TEMPERATURE", "PULSE"]	1	CDASH	VS	VISIT	text	Predecessor		VISIT	SDTM
["BODY_WEIGHT", "HEIGHT", "BP_DIASTOLIC", "BODY_TEMPERATURE", "PULSE"]	1	CDASH	VS	VSDAT	text	Assigned	VS.VSDTC		SDTM
["BODY_WEIGHT", "HEIGHT", "BP_DIASTOLIC", "BODY_TEMPERATURE", "PULSE"]	1	CDASH	VS	VISDAT	text	Assigned	VS.VSDTC		SDTM
["BODY_WEIGHT", "HEIGHT", "BP_DIASTOLIC", "BODY_TEMPERATURE", "PULSE"]	1	CDASH	DM	SUBJID	text	Assigned	ALL.USUBJID		SDTM
["BODY_WEIGHT", "HEIGHT", "BP_DIASTOLIC", "BODY_TEMPERATURE", "PULSE"]	1	CDASH	DM	RACE	text	Predecessor		RACE	SDTM

DS FDRUGDT DSSTDAT

SDTM

Reflections from WS4

What have we accomplished in the cdisc360 PoC

Machine-readable Study Specification Metadata

Study Design

 Implemented basic Study Definition and Design in Study Repository linked to Schedule of Assessment

CDASH & SDTM

- Implemented Assessment BC's in a Label Property Graph Model linked with versioned metadata from the CDISC Library
- Including sample CDASH2SDTM bindings

ADaM

- Implemented basic ADaM Sponsor model in a Label Property Graph Model linked with versioned metadata from the CDISC Library
- Including sample SDTM2ADaM bindings
- Study Builder & Sponsor Study MDR
 - Standard API based to enable tool and vendor agnostic system integrations

Thank You!

Mikkel Traun, *Novo Nordisk*Nicolas de Saint Jorre, *XClinical*

