The Future of Clinical Data: The Evolving Impact of CDISC and HL7 Standards

CLINICAL DATA INTERCHANGE STANDARDS CONSORTIUM

April 2011

Wayne R. Kubick
Sr. Vice President, Phase Forward
Lincoln Safety Group
Topics

- FDA and HL7
- CDISC and HL7
- CDISC standards for today
- Is HL7 the answer?
- A future vision for clinical data
Source: FDA PDUFA IV IT Plan
Note: FDA Plans to revise to clarify acceptance of both CDISC SDTM XPT and HL7 XML 2009-2013 and beyond.

FDA Messages on Standards

• “The World is Round”
 – Clinical data are not flat and cannot be exchanged using flat two-dimensional files without significant loss of meaning

• FDA is transitioning to a “round view of the world” of clinical research
 – CDISC-HL7 standard will get us there

• SDTM is here to stay
 – Will transition from a standard submission format to a standard view of data in support of simple analyses (e.g. distribution, means, etc.)

• But Flat Files Don’t Inherently Capture the Tree Structure, which is itself important to understand the data
 – Better approach: data model that inherently captures relationships at the point of collection and can transmit them.

Source: Dr. Armando Oliva
What is the Janus Data Pyramid?
Structured Scientific Data Management System

Exchange Layer

Persistence Layer

Database Layer

Data Mart & Special Purpose Layer

Analysis Layer

Results Layer

Source: Lilliam Rosario, FDA 2009
What is the Janus Data Pyramid?

Source: Clyde Ulmer, FDA NCTR 2010
Vision: Better Long-Term Integration with EHRs to Support Clinical Research and Surveillance

Source: Dr. Armando Oliva
Can We Stack Round Data?

• Is the flat file format the problem, or the fact that some relationships are never recorded or never collected?

• And clinical data can be arranged hierarchically with proper timing information and keys – even in SDTM

• While raw patient data may be rounder, is it really suited for aggregate, structured, dimensional data for analysis?
 – Isn’t clinical data recorded and collected on flat forms and analyzed in flat tables?

• And is a transport format optimized for sending short transactions best for a complete study worth of data – after data are cleaned, processed, amended, restructured?
 – And how do we ensure that FDA views match sponsor’s?
The Role of CDISC vs. HL7

CDISC
- Represents clinical research domain
- Community of clinical research workers
- Flexible process to facilitate wide acceptance of research standards
- Standards written for clinical research workers
- FDA observers
- Moving to content focus

HL7
- Represents many diverse healthcare domains
- Communities of IT modelers and developers
- Rigid, accredited, complex model-driven development processes
- Standards written for application developers
- FDA sponsor/initiator
- Harmonizing V2, V3, CDA
Defining SDTM for a non-XPT World

Source: Dave Iberson-Hurst
SDTM: a Standard for Today

- Based on FDA1999 Guidance
 - Withdrawn 2009

- Compromised to fit legacy data and SAS XPT
 - Insufficient metadata
 - Limitations on variable names, text length, datatypes
 - Lack of codelists, supplemental qualifiers, etc.

- Struggles with complex data scenarios

- Criticized by FDA for gaps and variability

- Fuzzy lines between tabulations and analysis

- Thus, not the ultimate answer, but good enough – and improvable
Transitioning SDTM for HL7

Source: Dave Iberson-Hurst
Realizing HL7 Benefits Requires Disruptive Process Changes

- Protocol ⇄ HL7 Study Design Message
- IND Process ⇄ Study Participation Msg
- SDTM/ADaM/Define ⇄ HL7 Subject Data Msg
- eCTD ⇄ RPS
- New standards ⇄ prescribed standards
 - eStability, Non-Clinical, etc.
- E2B ⇄ ICSR
- eCRF ⇄ EHR HL7 messages and documents?
- Flat SAS Datasets ⇄ Round, Convoluted XML
Vision: Better Long-Term Integration with EHRs to Support Clinical Research and Surveillance

Source: Dr. Armando Oliva
ICSR: Key Driver for HL7 Convergence

• Next ISO/HL7/CEN/ICH standard AE reporting format (E2B-R3)
• Provides rationale for sending HL7 clinical data
 – FDA wants ICSR to replace SAEs in clinical data
• Significant process implications: timing, content, state
 – Requires integrated tools not yet available today
 – Requires seamless equivalence of complete terminologies (e.g., MedDRA, ICD9, SNOMED)
• But as long as semantics and meaning are the same, does the message format have to be?
 – Integration occurs in the database, not between messages.
The Future of Clinical Data

Non-Protocol / Protocol

Procedures & / Observations
Analysis
Interpretation
Question

CDISC
A Future Vision for Clinical Data

• All studies are defined with standardized, structured, machine readable protocols, designs, plans
• Health data in native form – procedures and observations
 – Direct primary patient observations
 – Meta-observations
 – Context observations
 – Analysis observations
• HL7 raw data with common semantics seems well suited to this observational, transactional, interoperable world
• SDTM & ADaM views (perhaps as ODM) will also need to be submitted to support clinical review and analysis
 – But these must evolve to leverage direct healthcare data in “new” SDTM and ADaM views
Observations on the Future

• HL7 can provide a model, methods and terminology controls
 – But V3 XML may change
• HL7 transport will likely transmit direct patient observation and care records (allowing drilldown to round data)
• CDISC data structures bridge the gap from the raw data stream to structured clinical trial views of the data
• So go with the flow: Don’t worry about the RIM, DMIMs, RMIMs or the transport mechanism – and trust BRIDG
• Keep the faith: CDISC standards like SDTM, ODM, ADaM will be there while HL7 is tested, proven, and ready for use in the interoperable world. And trust CDISC to adapt.
The Future of Clinical Data: The Evolving Impact of CDISC and HL7

Thank you

“The best way out is always through.”

-- Robert Frost

Wayne Kubick
Phase Forward Lincoln Safety Group
wkubick@phaseforward.com